K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

\(\frac{1}{27}-64+3=-\frac{80}{27}+3=\frac{1}{27}.\)

dẽ mk

16 tháng 6 2017

học ngu  161/27

16 tháng 6 2017

\(\frac{1}{27}-64t^3=\left(\frac{1}{3}\right)^3-\left(4t\right)^3=\left(\frac{1}{3}-4t\right)\left(\frac{1}{9}+\frac{4}{3}t+16t^2\right)\)

21 tháng 8 2023

a. \(x^2-10x+25=\left(x-5\right)^2\)

b.\(4-4x^2+x^4=\left(2-x^2\right)^2\)

c. \(x^2-6y+9y^2=\left(x-3y\right)^2\)

d. \(\left(2x+y^2\right)\left(2x-y^2\right)=4x^2-y^4\)

21 tháng 8 2023

a) x2 - 10x + 25x = ( x - 5)2

b) 4 - 4x2 + x4 = ( 2 - x2 )2

c) x2 - 6xy + 9y2 = (x - 3y )2

d_ (2x + y2 ). (2x - y2 ) = 4x- y4

20 tháng 8 2019

Ta có:

f(x) = x4 – x2 + 6x – 9 = x4 – (x2 – 6x +9) = – (x-3)2

= (x2 –x + 3).(x2 + x - 3)

+ Tam thức x2 – x + 3 có Δ = -11 < 0, a = 1 > 0 nên x2 – x + 3 > 0 với ∀ x ∈ R.

+ Tam thức x2 + x – 3 có hai nghiệm Giải bài 11 trang 107 SGK Đại Số 10 | Giải toán lớp 10

Ta có bảng xét dấu sau:

Giải bài 11 trang 107 SGK Đại Số 10 | Giải toán lớp 10

Kết luận:

Giải bài 11 trang 107 SGK Đại Số 10 | Giải toán lớp 10

Tam thức x2 - 2x + 2 có Δ = -4 < 0, hệ số a = 1 > 0 nên x2 - 2x + 2 > 0 với ∀ x ∈ R

Tam thức x2 - 2x - 2 có hai nghiệm là x1 = 1 - √3; x2 = 1 + √3.

Tam thức x2 - 2x có hai nghiệm là x1 = 0; x2 = 2

Ta có bảng xét dấu :

Giải bài 11 trang 107 SGK Đại Số 10 | Giải toán lớp 10

Kết luận : g(x) < 0 khi x ∈ (1 - √3; 0) ∪ (2; 1 + √3)

g(x) = 0 khi x = 1- √3 hoặc x = 1 + √3

g(x) > 0 khi x ∈ (-∞; 1 - √3) ∪ (0; 2) ∪ (1 + √3; +∞)

g(x) không xác định khi x = 0 và x = 2.

19 tháng 7 2019

Trả lời

2002 x 1006

= ( 1504 + 498 ) x ( 1504 - 498 )

= 15042 - 4982

= 2014012

198 x 202 

= ( 200 - 2 ) x ( 200 + 2 )

= 2022 - 22

= 40800

29 tháng 6 2019

a) Kết quả - x 2  + 2.               b) Kết quả − 1 2 ( 4 x 2 + 10 x + 25 ) .  

c) Kết quả - ( x 3   +   1 ) 2 .

Ta có:

\(101^{^{ }3}\) = \(\text{(100+1)^3}\) : \(99^3\)\(\text{(100-1)^3}\)

26 tháng 9 2018

       \(101^3-99^3+1\)

\(=\left(101-99\right)\left(101^2+101.99+99^2\right)+1\)

\(=2.\left[\left(101+99\right)^2-101.99\right]+1\)

\(=2.\left[40000-9999\right]+1\)

\(=2.30001+1=60003\)

Mình nghĩ cách này là thuận tiện nhất rồi. Chúc bạn học tốt.