K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2017

áp dụng hệ thức lg có AH ^2 =BH ,CH <=>BH,CH=36    (1)

TỪ BH-CH =9 =>BH =9+HC                                         (2)

TỪ (1) VÀ (2) SUY RA  HC=3cm hoặc CH = -12 cm vì cạnh tam giác k âm suy ra HC =3 cm suy ra BH=12 cm 

xong bn áp dụng pitago ý hay hệ thức lg cũng đc để tfm ra AB ,AC nha 

Ta có HC-HB=9

➞HC=9+HB

Áp dụng hệ thức lượng ta có:

AH2=HB.HCAH2=HB.HC

36=HB.(9+HB)36=HB.(9+HB)

⇔HB2+9HB-36=0

(HB−3)(HB+12)(HB−3)(HB+12)=0

⇔HB=3;HC=9

22 tháng 8 2023

a) \(AH^2=HB.HC=50.8=400\)

\(\Rightarrow AH=20\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.20\left(50+8\right)=\dfrac{1}{2}.20.58\left(cm^2\right)\)

mà \(S_{ABC}=\dfrac{1}{2}AB.AC\)

\(\Rightarrow AB.AC=20.58=1160\)

Theo Pitago cho tam giác vuông ABC :

\(AB^2+AC^2=BC^2\)

\(\Rightarrow\left(AB+AC\right)^2-2AB.AC=BC^2\)

\(\Rightarrow\left(AB+AC\right)^2=BC^2+2AB.AC\)

\(\Rightarrow\left(AB+AC\right)^2=58^2+2.1160=5684\)

\(\Rightarrow AB+AC=\sqrt[]{5684}=2\sqrt[]{1421}\left(cm\right)\)

Chu vi Δ ABC :

\(AB+AC+BC=2\sqrt[]{1421}+58=2\left(\sqrt[]{1421}+29\right)\left(cm\right)\)

1: AB/AC=5/7

=>HB/HC=(AB/AC)^2=25/49

=>HB/25=HC/49=k

=>HB=25k; HC=49k

ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

=>1225k^2=15^2=225

=>k^2=9/49

=>k=3/7

=>HB=75/7cm; HC=21(cm)

 

25 tháng 9 2021

\(BC=BH+HC=8\left(cm\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}AB^2=2\cdot8=16\left(cm\right)\\AC^2=2\cdot6=12\left(cm\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=4\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

25 tháng 9 2021

Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH:

\(AH^2=BH.HC\Rightarrow AH=\sqrt{BH.HC}=\sqrt{2.6}=2\sqrt{3}\left(cm\right)\)

Áp dụng đ/lý Pytago trong tam giác vg ABH và AHC

\(\left\{{}\begin{matrix}AB^2=AH^2+HB^2=16\\AC^2=AH^2+HC^2=48\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}AB=4cm\\AC=4\sqrt{3}cm\end{matrix}\right.\)

NV
29 tháng 7 2021

\(HC-HB=9\Rightarrow HC=HB+9\)

Áp dụng hệ thức lượng:

\(AH^2=HB.HC\Leftrightarrow6^2=HB\left(HB+9\right)\)

\(\Leftrightarrow HB^2+9HB-36=0\Rightarrow\left[{}\begin{matrix}HB=3\\HB=-12\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow HC=HB+9=12\)

Ta có: HC-HB=9

nên HC=9+HB

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB^2+9HB-36=0\)

\(\Leftrightarrow\left(HB+12\right)\left(HB-3\right)=0\)

\(\Leftrightarrow HB=3\left(cm\right)\)

\(\Leftrightarrow HC=12\left(cm\right)\)

10 tháng 8 2015

Gọi HB,HC lần lượt là a và b(a,b >0)

Có a -b =9 (cm) => b=a+9

Ta lại có : AH2 = a(a+9)

62 = a2 +9a

a2 +9a - 36 = 0

a2 +12a - 3a - 36 = 0

a(a+12) - 3(a+3) = 0

(a + 12)(a - 3) = 0    

Mà a > 0  => a=3

=> b = 9 +3 =12

Vậy : HB = 3cm

        HC = 12 cm

 

29 tháng 6 2018

Ta có: HC - HB = 9 \(\Rightarrow\)HC = HB + 9

Theo hệ thức lượng 2 trong tam giác vuông; ta có:

\(AH^2=BH\times CH=BH\times\left(BH+9\right)\)

\(\Leftrightarrow6^2=BH^2+9BH\)

\(\Leftrightarrow BH^2+9BH-36=0\)

\(\Leftrightarrow BH^2-3BH+12BH-36=0\)

\(\Leftrightarrow\left(BH-3\right)\left(BH+12\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}BH=3\left(tm\right)\\BH=-12\end{cases}}\)

\(\Rightarrow CH=9+BH=9+3=12\)

Vậy BH = 3cm; CH = 12 cm