Tìm giá trị nhỏ nhất: \(C=10x^2+10y^2-2xy-8x+14y+11\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gợi ý nhé:
[-(x-y)2-10(x-y)-25] - 2(y-1)2 + 2010
= -[(x-y)+5]2 - 2(y-1)2 + 2010
tự cậu suy ra MAX nhé
chưa hiểu thì hỏi nhé
A = -x2 - 3y2 - 2xy + 10x + 14y - 18
A = -x2 - y2 -25 + 10x +10y -2xy -2y2 + 4y -2 + 9
A = -(x2 + y2 + ( -5 )2 - 10x - 10y + 2xy ) - 2 (y2 - 2y + 1 ) + 9
A = -( x + y - 5 )2 - 2 ( y - 1 )2 + 9
-( x + y - 5 )2 \(\le\)0 ; - 2 ( y - 1 )2 \(\le\)0
\(\Rightarrow\)A \(\le\)0 + 0 + 9 = 9
Dấu " = " xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x+y-5=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}}\)
mk lm mẫu cho bạn 1 phần nhé
a) \(A=3x^2+y^2+10x-2xy+26\)
\(=\left(x^2-2xy+y^2\right)+2\left(x^2+5x+6,25\right)+13,5\)
\(=\left(x-y\right)^2+2\left(x+2,5\right)^2+13,5\ge13,5\)
Dấu "=" xảy ra <=> \(x=y=-2,5\)
Vậy MIN A = 13,5 khi x = y = - 2,5
\(A=\left(-x^2-2xy-y^2\right)-2y^2+\left(10x+10y\right)+4y-18\)
\(=-\left(x+y\right)^2+2\left(x+y\right).5-\left(2y^2-4y+2\right)-16\)
\(=-\left[\left(x+y\right)^2-2\left(x+y\right).5+5^2\right]-2\left(y-1\right)^2+9\)
\(=-\left(x+y-5\right)^2-2\left(y-1\right)^2+9\le9\forall x;y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y-5=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5-y\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}\)
Vậy \(A_{max}=9\Leftrightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}\)