K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

a/ \(\sqrt{17}+\sqrt{5}+1>\sqrt{16}+\sqrt{4}+1=4+2+1=7\)

\(\sqrt{45}< \sqrt{49}=7\)

\(\Rightarrow\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)

b/ Ta có:

\(\sqrt{n}< \sqrt{n+1}\)

\(\Rightarrow2\sqrt{n}< \sqrt{n+1}+\sqrt{n}\)

\(\Rightarrow\dfrac{1}{\sqrt{n}}>\dfrac{2}{\sqrt{n+1}+\sqrt{n}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)

Áp dụng vào bài toán được

\(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{36}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{37}-\sqrt{36}\right)\)

\(=2\left(\sqrt{37}-1\right)>6\)

23 tháng 4 2021

a) 3\(\sqrt{3}\)=\(\sqrt{27}\)>\(\sqrt{12}\)

c) \(\frac{1}{3}\)\(\sqrt{51}\)=\(\sqrt{\frac{51}{9}}\)<\(\frac{1}{5}\)\(\sqrt{150}\)=\(\sqrt{\frac{150}{25}}\)=\(\sqrt{6}\)

b) 3\(\sqrt{5}\)=\(\sqrt{45}\)< 7=\(\sqrt{49}\)

d) \(\frac{1}{2}\sqrt{6}\)=\(\sqrt{\frac{6}{4}}\)=\(\sqrt{\frac{3}{2}}\)< 6\(\sqrt{\frac{1}{2}}\)=\(\sqrt{\frac{36}{2}}\)=\(\sqrt{18}\)

28 tháng 5 2021

a) Ta có: 33=32.3=9.3=27

Vì 27>12 nên 33>12

Vậy 33>12.
b) Ta có: 35=32.5=45

7=72=49

Vì 49>45 nên 7>35

Vậy 7>35.

c) Ta có: 1351=(13)2.51=519

15150=(15)2.150=15025=6=6.99=549

Vì 549>519 nên 1351<15150

Vậy 1351<15150.

d) Ta có: 126=(12)2.6=64

=32=3.12=3.12

Vì 3.12<612 nên 12.6<612

Vậy 126<612.

23 tháng 7 2016

mình chỉ giải được phần này thôi

b.A = \(\sqrt{17}\)+\(\sqrt{26}\)+ 1 > \(\sqrt{16}\)+\(\sqrt{25}\)+ 1 = 4 + 5 +1 = 10

B = \(\sqrt{99}\)<\(\sqrt{100}\)= 10

=> A > B

25 tháng 2 2017

\(S=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}+...+\frac{1}{\sqrt{2025}-\sqrt{2024}}\)

Ta nhận xét thấy mỗi số hạng trong S đều dương. Từ đó ta đặt

\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}+...+\frac{1}{\sqrt{2024}-\sqrt{2023}}\left(A>0\right)\)

\(\Rightarrow S=A+\frac{1}{\sqrt{2025}-\sqrt{2024}}=A+\frac{\sqrt{2025}+\sqrt{2024}}{\left(\sqrt{2025}-\sqrt{2024}\right)\left(\sqrt{2025}+\sqrt{2024}\right)}\)

\(=A+\sqrt{2025}+\sqrt{2024}>\sqrt{2025}=45\)

Vậy \(S>45\)

PS: Phan Thanh Tịnh xem lại bài giải nhé bạn

24 tháng 2 2017

Ta có : 1 = (n + 1) - n =\(\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2\)

\(=\left(\sqrt{n+1}\right)^2-\sqrt{n+1}.\sqrt{n}+\sqrt{n+1}.\sqrt{n}+\left(\sqrt{n}\right)^2\)

\(=\sqrt{n+1}.\left(\sqrt{n+1}-\sqrt{n}\right)+\sqrt{n}.\left(\sqrt{n+1}-\sqrt{n}\right)\)

\(=\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n-1}+\sqrt{n}\right)\)\

\(\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)

Áp dụng vào bài toán,ta có :

\(S=\sqrt{1}+\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2025}-\sqrt{2024}=\sqrt{2025}\)= 45

Vậy S = 45

23 tháng 6 2018

Em mới học lớp 6 thôi để em thử àm xem nó ra sao:

a)<

b)<

c)<

e)<

1 tháng 3 2020

a)Ta có:\(\sqrt{17}>\sqrt{16}\)

             \(\sqrt{26}>\sqrt{25}\)

\(\implies\) \(\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}\)

\(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)

Mà \(\sqrt{100}=10\) \(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{100}\)

Mà \(\sqrt{100}>\sqrt{99}\) \(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

b)Ta có:\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=100.\frac{1}{\sqrt{100}}\)

\(\implies\) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>\frac{1}{10}.100=10\)

\(\implies\) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>10\left(đpcm\right)\)

26 tháng 8 2020

B2:

3) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2019}+\sqrt{2020}}\)

\(=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{2020}-\sqrt{2019}}{2020-2019}\)

\(=\sqrt{2}-1+\sqrt{3}-2+...+\sqrt{2020}-\sqrt{2019}\)

\(=\sqrt{2020}-1\)

2 tháng 7 2017

B3: \(\sqrt{x^4-4x^3+2x^2+4x+1}=3x-1\)

\(pt\Leftrightarrow x^4-4x^3+2x^2+4x+1=\left(3x-1\right)^2\)

\(\Leftrightarrow x^4-4x^3+2x^2+4x+1=9x^2-6x+1\)

\(\Leftrightarrow x^4-4x^3-7x^2+10x=0\)

\(\Leftrightarrow x\left(x^3-4x^2-7x+10\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\) (thỏa mãn (mấy cái kia loại hết))