CHO TAM GIÁC ABC , GỌI BX LÀ TIA ĐỐI CỦA BA , CY LÀ TIA ĐỐI CỦA CA . KẺ CÁC ĐƯỜNG PHÂN GIÁC BM CỦA GÓC XBC , ĐƯỜNG PHÂN GIÁC CN CỦA GÓC YCB .
A, CMR BM CẮT CN
B,TIA BM CÓ THỂ SONG SONG VỚI AC ĐƯỢC KHÔNG?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-a+a^2\right)\left(1-b+b^2\right)=1-b+b^2-a+ab-ab^2+a^2-a^2b+a^2b^2.\)
\(=\frac{2-2a-2b+2b^2+2ab+2a^2-2ab\left(a+b\right)+2a^2b^2}{2}\)\(=\frac{\left(a-b\right)^2+1+a^2b^2+\left(1-a\right)^2\left(1-b\right)^2}{2}\ge\frac{1+a^2b^2}{2}\)
Tương Tự : \(\left(1-c+c^2\right)\left(1-d+d^2\right)\ge\frac{1+c^2d^2}{2}\)
(1-a+a2) (1-b+b2) = 1-b+b2-a+ab-ab2+a2-a2b+a2b2.
=2-2a-2b+2b2+2ab+2a2-2ab(a+b)+2a2b2 =(a-b)2+1+a2b2+(1-a)2(1-b)2> 1+a2b2 2 2 Tương Tự:(1-c+c2) (1-d+d2) > 1+c2d2 2
\(a,ABM=MBC=\frac{ABC}{2}\)(BM là p/g t/g ABC)
\(ACN=NCB=\frac{ACB}{2}\)(CN là p/g t/g ABC)
mà ABC= ACB(t/g ABC cân A)
\(\rightarrow ABM=ACN\)
Xét t/g ABM và t/g ACN
Có ^BAC chung
AC= AB(t/g ABC cân A)
^ABM= ^ACN(cmt)
\(\rightarrow\)t/g ABM = t/g ACN(gcg)
a) Giả sử Bm // Cn. Khi đó ta có:
\(\widehat{xBm}=\widehat{BCn}\) (hai góc đồng vị) và \(\widehat{BCn}+\widehat{CBm}=180^o\) (hai góc trong cùng phía)
\(\Rightarrow\widehat{xBm}+\widehat{mBC}=\widehat{xBC}=180^o\) (a)
Mà \(\widehat{ABC}\) và \(\widehat{xBC}\) là hai góc kề bù (vì \(\widehat{xBC}\) là góc ngoài đỉnh B)
\(\Rightarrow\widehat{ABC}+\widehat{mBC}=180^o\)
\(\Rightarrow\widehat{mBC}=180^o-\widehat{ABC}\)
\(\Rightarrow\widehat{mBC}< 180^o\) (b)
Từ (a) và (b) suy ra vô lí, suy ra Bm không song song với Cn
Vậy Bm cắt Cn