Tìm các số nguyên \(n\) để \(n^5+1\) chia hết cho \(n^3+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐỂ x4 - x3 + 6x2 -x \(⋮x^2-x+5\)
\(\Rightarrow x-5=0\Rightarrow x=5\)
b , ta có : \(3x^3+10x^2-5⋮3x+1\)
\(\Rightarrow3x^3+x^2+9x^2+3x-3x-1-4⋮3x+1\)
\(\Rightarrow x\left(3x+1\right)+3x\left(3x+1\right)-\left(3x+1\right)-4⋮3x+1\)
mà : \(\left(3x+1\right)\left(4x-1\right)⋮3x+1\)
\(\Rightarrow4⋮3x+1\Rightarrow3x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Nếu : 3x + 1 = 1 => x = 0 ( TM )
3x + 1 = -1 => x = -2/3 ( loại )
3x + 1 = 2 => x = 1/3 ( loại )
3x + 1 = -2 => x = -1 ( TM )
3x + 1 = 4 => x = 1 ( TM )
3x + 1 = -1 => x = -5/3 ( loại )
\(\Rightarrow x\in\left\{0;\pm1\right\}\)
Answer:
a) \(\left(n+2\right)⋮\left(n-3\right)\)
\(\Rightarrow\left(n-3+5\right)⋮\left(n-3\right)\)
\(\Rightarrow5⋮\left(n-3\right)\)
\(\Rightarrow n-3\) là ước của \(5\), ta có:
Trường hợp 1: \(n-3=-1\Rightarrow n=2\)
Trường hợp 2: \(n-3=1\Rightarrow n=4\)
Trường hợp 3: \(n-3=5\Rightarrow n=8\)
Trường hợp 4: \(n-3=-5\Rightarrow n=-2\)
b) Ta có: \(x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow x\in\left\{4;16;2;-10\right\}\)
Vậy để \(x-3\inƯ\left(13\right)\Rightarrow x\in\left\{4;16;2;-10\right\}\)
c) Ta có: \(x-2\inƯ\left(111\right)\)
\(\Rightarrow x-2\in\left\{\pm111;\pm37;\pm3;\pm1\right\}\)
\(\Rightarrow x\in\left\{-99;-35;1;1;3;5;39;113\right\}\)
d) \(5⋮n+15\Rightarrow n+15\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Trường hợp 1: \(n+15=-1\Rightarrow n=-16\)
Trường hợp 2: \(n+15=1\Rightarrow n=-14\)
Trường hợp 3: \(n+15=5\Rightarrow n=-10\)
Trường hợp 4: \(n+15=-5\Rightarrow n=-20\)
Vậy \(n\in\left\{-14;-16;-10;-20\right\}\)
e) \(3⋮n+24\)
\(\Rightarrow n+24\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-23;-25;-21;-27\right\}\)
f) Ta có: \(x-2⋮x-2\)
\(\Rightarrow4\left(x-2\right)⋮x-2\)
\(\Rightarrow4x-8⋮x-2\)
\(\Rightarrow\left(4x+3\right)-\left(4x-8\right)⋮x-2\)
\(\Rightarrow11⋮x-2\)
\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{3;13;1;-9\right\}\)
\(a,n+3⋮n\)
mà \(n⋮n\Rightarrow n\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(b,2n+3⋮n\)
mà \(2n⋮n\Rightarrow n\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(c,3n-1⋮n+1\)
\(\Rightarrow3n+3-2⋮n+1\)
\(\Rightarrow3\left(n+1\right)-2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow n\in\left\{0;-2;1;-3\right\}\)
n + 3 ⋮ n - 1 ⇔ n - 1 + 4 ⋮ n -1 ⇔ 4 ⋮ n - 1 ⇔ n -1 \(\in\) Ư(4)
Ư(4) = { -4; -2; -1; 1; 2; 4}
Lập bảng ta có:
n-1 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -3 | -1 | 0 | 2 | 3 | 5 |
Từ bảng trên ta có: n + 3 ⋮ n - 1 ⇔ n \(\in\) { -3; -1; 0; 2; 3; 5}
\(n^5+1 ⋮n^3+1\)
\(\Rightarrow n^2\left(n^3+1\right)-\left(n^2-1\right)⋮n^3+1\)
\(\Rightarrow\left(n^2-1\right)⋮\left(n+1\right)\left(n^2-n+1\right)\)
\(\Rightarrow\left(n+1\right)\left(n-1\right)⋮\left(n+1\right)\left(n^2-n+1\right)\)
\(\Rightarrow\left(n-1\right)⋮\left(n^2-n+1\right)\)
\(\Rightarrow n\left(n-1\right)-\left(n^2-n+1\right)⋮n^2-n+1\)
\(\Rightarrow-1⋮n^2-n+1\)
Trường hợp 1:
\(n^2-n+1=1\Rightarrow n\left(n-1\right)=0\Rightarrow n=0;n=1\)
Trường hợp 2:
\(n^2-n+1=-1\left(a\right)\)
Vì \(n^2-n+1=n^2-n+\dfrac{1}{4}-\dfrac{1}{4}+1=\left(n-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow\left(a\right)\) vô lý
Vậy \(n=0;n=1\)