Tính giá trị nhỏ nhất của biểu thức:
A= 2x\(^2\) + 2\(\sqrt{2x}\) + 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(A=2\sqrt{x^2+x+\dfrac{1}{2}}=2\sqrt{x^2+x+\dfrac{1}{4}+\dfrac{1}{4}}=2\sqrt{\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}}\)
\(=\sqrt{4\left(x+\dfrac{1}{2}\right)^2+1}\ge1\) dấu"=" xảy ra<=>x=-1/2
\(B=\sqrt{2\left(x^2-2x+\dfrac{5}{2}\right)}=\sqrt{2\left[x^2-2x+1+\dfrac{3}{2}\right]}\)
\(=\sqrt{2\left(x-1\right)^2+3}\ge\sqrt{3}\) dấu"=" xảy ra<=>x=1
\(C=\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\ge\dfrac{-2}{-\sqrt{2}}=\sqrt{2}\) dấu"=" xảy ra<=>x=1
\(D=x-2\sqrt{x+2}\ge-2\) dấu"=" xảy ra<=>x=-2
\(A=3\left|1-2x\right|-5\)
Ta có: \(\left|1-2x\right|\ge0\forall x\)
\(\Rightarrow3.\left|1-2x\right|-5\ge-5\forall x\)
\(\Rightarrow A\ge-5\forall x\)
Dấu "=" xảy ra
\(\Leftrightarrow3.\left|1-2x\right|=0\Leftrightarrow1-2x=0\Leftrightarrow x=\dfrac{1}{2}\)
\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\)
b.\(B=7-\left(x+3\right)^2\le7\forall x\) " = " \(\Leftrightarrow x=-3\)
c.\(C=\left|2x-3\right|-13\ge-13\forall x\) " = " \(\Leftrightarrow x=\dfrac{3}{2}\)
d.\(D=11-\left|2x-13\right|\le11\forall x\) " = " \(\Leftrightarrow x=\dfrac{13}{2}\)
\(a,=x^2-8x+16+1=\left(x-4\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow x=4\)
\(b,=\left(4x^2-12x+9\right)+4=\left(2x-3\right)^2+4\ge4\)
Dấu \("="\Leftrightarrow x=\dfrac{3}{2}\)
\(c,=\left(9x^2-2\cdot3\cdot\dfrac{1}{3}x+\dfrac{1}{9}\right)+\dfrac{26}{9}=\left(3x-\dfrac{1}{3}\right)^2+\dfrac{26}{9}\ge\dfrac{26}{9}\)
Dấu \("="\Leftrightarrow3x=\dfrac{1}{3}\Leftrightarrow x=\dfrac{1}{9}\)
\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)
\(A=x^2-20x+101=\left(x-10\right)^2+1\ge1\)
\(minA=1\Leftrightarrow x=10\)
\(B=2x^2+40x-1=2\left(x+10\right)^2-201\ge-201\)
\(minB=-201\Leftrightarrow x=-10\)
\(C=x^2-4xy+5y^2-2y+28=\left(x^2-4xy+4y^2\right)+\left(y^2-2y+1\right)+27=\left(x-2y\right)^2+\left(y-1\right)^2+27\ge27\)
\(minC=27\Leftrightarrow\)\(\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)
\(D=\left(x-2\right)\left(x-5\right)\left(x^2-7x-10\right)=\left(x^2-7x+10\right)\left(x^2-7x+10\right)=\left(x^2-7x\right)^2-100\ge-100\)
\(minD=100\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
a: Ta có: \(A=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=10
b: ta có: \(B=2x^2+40x-1\)
\(=2\left(x^2+20x-\dfrac{1}{2}\right)\)
\(=2\left(x^2+20x+100-\dfrac{201}{2}\right)\)
\(=2\left(x+10\right)^2-201\ge-201\forall x\)
Dấu '=' xảy ra khi x=-10
Ta có: \(\left|-2x+3\right|\ge0\)
\(\Rightarrow\left|-2x+3\right|+2\ge2\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra <=> -2x + 3 = 0 <=> x = -3/2
Vậy GTNN của A là 2 khi x = -3/2
\(A=2x^2+2\sqrt{2}x+3\\ =2\left(x^2+\sqrt{2}x+\dfrac{3}{2}\right)\\ =2.\left(x^2+2.\dfrac{1}{\sqrt{2}}x+\dfrac{1}{2}+1\right)\\ =2.\left(x^2+2.\dfrac{1}{\sqrt{2}}x+\dfrac{1}{2}\right)+2\\ =2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2+2\)
Ta có \(2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2\ge0\forall x\)
\(2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2+2\ge2\forall x\)
Dấu bằng xảy ra khi : \(x+\dfrac{1}{\sqrt{2}}=0\\ \Rightarrow x=\dfrac{-\sqrt{2}}{2}\)
Vậy \(Min_A=2\) khi \(x=\dfrac{-\sqrt{2}}{2}\)