(1/25 x 26 + 1/26x27+...+1/29x30)x150 + 1,03: [1,03x(X-1)] =22
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{25.26}+\frac{1}{26.27}+...+\frac{1}{29.30}\right)\cdot150+1,03\div\left[1,03\cdot\left(y-1\right)\right]\text{ }=22\)
\(\Rightarrow\left(\frac{1}{25}-\frac{1}{26}+\frac{1}{26}-\frac{1}{27}+...+\frac{1}{29}-\frac{1}{30}\right)\cdot150+1,03\div\left[1,03\cdot\left(y-1\right)\right]=22\)
\(\Rightarrow\left(\frac{1}{25}-\frac{1}{30}\right)\cdot150+1,03\div\left[1,03\cdot\left(y-1\right)\right]=22\)
\(\Rightarrow\frac{1}{150}\cdot150+1,03\div\left[1,03\left(y-1\right)\right]=22\)
\(\Rightarrow1+1,03\div\left[1,03\left(y-1\right)\right]=22\)
\(\Rightarrow1,03\left(y-1\right)=1,03\div\left(22-1\right)\)
\(\Rightarrow1,03y-1,03=1,03\div21\)
\(\Rightarrow1,03y=\frac{103}{2100}+1,03\)
\(\Rightarrow1,03y=\frac{1133}{1050}\)
\(\Rightarrow y=\frac{1133}{1050}\div\frac{103}{100}=\frac{1133}{1050}\cdot\frac{100}{103}=\frac{22}{21}\)
Vậy y = \(\frac{22}{21}\)
Dấu " . " là dấu nhân nhé
\(\left(\frac{1}{25\times26}+\cdot\cdot\cdot+\frac{1}{29\times30}\right)\times150+1\frac{3}{100}:[1\frac{3}{100}\times(y-1)]=22\)
\(\Rightarrow\left(\frac{1}{25}-\frac{1}{26}+\cdot\cdot\cdot+\frac{1}{29}-\frac{1}{30}\right)\times150:\left(y+1\right)=22\)
\(\Rightarrow\left(\frac{1}{25}-\frac{1}{30}\right)\times150:\left(y+1\right)=22\)
\(\Rightarrow\frac{1}{150}\times150:\left(y+1\right)=22\)
\(\Rightarrow1:\left(y+1\right)=22\)
\(\Rightarrow y+1=\frac{1}{22}\)
\(\Rightarrow y=\frac{1}{22}-1=\frac{-21}{22}\)
( 1/25 - 1/30 ) x 150 + 1,03 : 1,03 x ( x - 1 ) = 3 ( 1/150 x 150 + 1 x ( x - 1 ) = 3 1 + ( x - 1 ) = 3 x - 1 = 3 - 1 = 2 x = 1 + 2 x = 3
[ 1/ 25 x 26 + 1/26x27+....+ 1/29x30] x 150 + 103; 1,03 x ( x -1 ) =22
[ 1/25x26 + 1/26x27 + 1/27x28 + 1/28x29 + 1/29x30] x 150 + 103;1,03 x (x-1)=22
[ 1/650 + 1/702 + 1/756 + 1/812 + 1/870] x 150 + 103 ; 1,03 x (x-1) =22
\(\left(\frac{1}{25}-\frac{1}{30}\right).150+1,03:1,03.\left(x-1\right)=3\)
\(\frac{1}{150}.150+1.\left(x-1\right)=3\)
\(1+\left(x-1\right)=3\)
\(x-1=3-1=2\)
\(x=2+1\)
\(x=3\)