Cho tứ giác ABCD có AB + BD \(_{^{ }\le}\) AC + CD. Chứng minh : AB < AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(O\)là giao điểm của \(AC\)và \(BD\).
Theo bất đẳng thức tam giác ta có:
\(OA+OB>AB\)
\(OC+OD>CD\)
\(\Rightarrow AB+CD< OA+OB+OC+OD=AC+BD\)
mà \(AB+BD\le AC+CD\)
suy ra \(2AB+CD+BD< 2AC+BD+CD\)
\(\Leftrightarrow AB< AC\).
Gọi giao điểm của AC và BD là O
Ta có:
OA+OB>AB ( bất đẳng thức tam giác)
OC+OD>CD ( bất đẳng thức tam giác)
=> AC+BD>AB+CD
Mà AC+CD>=AB+BD ( giả thiết)
=> 2AC+BD+CD>2AB+BD+CD
=> 2AC>2AB
=> AC>AB