Cho biết n thuộc N* và n2 +4 chia hết cho n+1 .vậy n bằng bao nhiêu?
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
TT
0
NK
0
8 tháng 1 2016
Ta có: n2+4 chia hết cho n+1
=> n2+n-n-1+5 chia hết cho n+1
=>n(n+1)-(n+1)+5 chia hết cho n+1
=>(n+1)(n-1)+5 chia hết cho n+1
Mà (n+1)(n-1) chia hết cho n+1
=>5 chia hết cho n+1
=>n+1\(\in\)Ư(5)={1;5}
=>n\(\in\){0;4}
Mà n \(\in\) N*
=> n=4
Vậy n=4
tick ủng hộ mình nha!
n2 + 4 chia hết cho n + 1
<=> n2 - 1 + 5 chia hết cho n + 1
<=> (n - 1)(n + 1) + 5 chia hết cho n + 1
Vì (n - 1)(n + 1) chia hết cho n + 1 với mọi n thuộc Z
Để (n - 1)(n + 1) + 5 chia hết cho n + 1 <=> 5 chia hết cho n + 1
Hay n + 1 thuộc Ư(5) = { - 5; - 1; 1; 5 }
=> n = { - 6; - 2; 0; 4 } Mà n thuộc N* nên n = 4
Vậy với n = 4 thì n2 + 4 chia hết cho n + 1 .
Vì \(n^2+4⋮n+1\)
mà \(n+1⋮n+1\)=) \(n.\left(n+1\right)⋮n+1\)=) \(n^2+n⋮n+1\)
=) \(\left(n^2+4\right)-\left(n^2+n\right)⋮n+1\)
=) \(n^2+4-n^2-n⋮n+1\)
=) \(4-n⋮n+1\)
Có \(4-n⋮n+1\)
mà \(n+1⋮n+1\)
=) \(\left(4-n\right)+\left(n+1\right)⋮n+1\)
=) \(4-n+n+1⋮n+1\)
=) \(5⋮n+1\)=) \(n+1\inƯ\left(5\right)=\left\{1,5\right\}\)
=) \(n=4\)( Vì \(n\in N\)* )