7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7
Rút gọn thành lũy thừa
{ ai nhanh nhất mk sẽ tick cho }
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tớ nghĩ cùng mũ nhân tử : \(2^7.5^7=\left(2.5\right)^7=10^7\)
S=a^0+a^1+a^2+....+a^2007 (1) <=>a.S=a^1+a^2+a^3+....+a^2007+a^2008 (2) lấy (2) trừ (1) ta được: a.S-S=a^2008-a^0=a^2008-1 <=>S=(a^2008-1)/(a-1) với a=-1/7 ta có: S= (-1/7)^0 + (-1/7)^1+(-1/7)^2 +...+ (-1/7)^2007 =[(-1/7)^2008 -1]/(-1/7 -1)
a) 75:72=75-2=73
b) 77:76=77-6=7
c) 78:78=78-8=70=1
d) 75:7=75-1=76
a) \(2^5\cdot2^7\)
\(=2^{5+7}\)
\(=2^{12}\)
b) \(2^3\cdot2^2\)
\(=2^{3+2}\)
\(=2^5\)
c) \(2^4\cdot2^3\cdot2^5\)
\(=2^{4+3+5}\)
\(=2^{12}\)
d) \(2^2\cdot2^4\cdot2^6\cdot2\)
\(=2^{2+4+6+1}\)
\(=2^{13}\)
e) \(2\cdot2^3\cdot2^7\cdot2^4\)
\(=2^{1+3+7+4}\)
\(=2^{15}\)
f) \(3^8\cdot3^7\)
\(=3^{8+7}\)
\(=3^{15}\)
g) \(3^2\cdot3\)
\(=3^{2+1}\)
\(=3^3\)
h) \(3^4\cdot3^2\cdot3\)
\(=3^{4+2+1}\)
\(=3^7\)
I) \(3\cdot3^5\cdot3^4\cdot3^2\)
\(=3^{1+5+4+2}\)
\(=3^{12}\)
A = 7.(1 + 7) + 73.(1 + 7) + ... + 735.(1 + 7)
= 7.8 + 73.8 + ... + 735.8
= 8.(7 + 73 + ... + 735) chia hết cho 8
=> A chia 8 dư 0/
Đặt A = 1 + 7 + 72 + ... + 798
=> A = 70 + 71 + 72 + ... + 798
=> A = ( 70 + 71 + 72 ) + ( 73 + 74 + 75 ) + ... + ( 796 + 797 + 798 )
=> A = 70 . ( 70 + 71 + 72 ) + 73 . ( 70 + 71 + 72 ) + ... + 796 . ( 70 + 71 + 72 )
=> A = 70 . 57 + 73 . 57 + ... + 796 . 57
=> A = 57 . ( 70 + 73 + ... + 796 ) \(⋮\)57
Đặt S = \(1+7+7^2+..........+7^{98}\)
\(\Rightarrow S=7^0+7^1+7^2+.............+7^{98}\)
\(\Rightarrow S=\left(7^0+7^1+7^2\right)+\left(7^3+7^4+7^5\right)+..........+\left(7^{96}+7^{97}+7^{98}\right)\)
\(\Rightarrow S=7^0.\left(7^0+7^1+7^2\right)+7^3.\left(7^0+7^1+7^2\right)+............+7^{96}.\left(7^0+7^1+7^2\right)\)
\(\Rightarrow S=7^0.57+7^3.57+..........+7^{98}.57\)
\(\Rightarrow S=57.\left(7^0+7^3+.........+7^{98}\right)\)
Mà 57 \(⋮\)57 \(\Rightarrow57.\left(7^0+7^3+..........+7^{98}\right)⋮57\)
Vậy tổng S chia hết cho 57
\(a,\left(-7\right)^6\)
\(b,\left(-4\right)^3.\left(-5\right)^3=\left[\left(-4\right).\left(-5\right)\right]^3=20^3\)
7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 =\(7^{11}\)
7.7.7.7.7.7.7.7.7.7.7=711