Cho tam giác ABc cân tại A, Góc A = 30 độ; BC= 2 cm. Trên cạnh AC lấy điểm D sao cho AD = căn 2
a) Tính góc ABD
b) So sánh ba cạnh của tam giác DBC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì\(\Delta ABC\)cân tại A nên \(\widehat{B}=\widehat{C}\)(t/c)
=> \(\widehat{B}=\widehat{C}\)=50o
=> \(\widehat{A}\)=80o
Ta lại có : \(\widehat{ABK}+\widehat{KBC}=\widehat{ABC}\)
<=> \(\widehat{ABK}=50^{o^{ }^{ }}-10^o=40^o\)
Xét \(\Delta ABK\)có
\(\widehat{A}+\widehat{ABK}+\widehat{AKB}=180^o\)
=> \(\widehat{AKB}=180^0-\left(40^0+80^o\right)=40^o\)
=>\(\widehat{ABK}=\widehat{AKB}\)=> \(\Delta ABK\)cân (đpcm)
Cách 3: (Lớp 8) Trên nửa mặt phẳng bờ AC không chứa B, dựng tam giác đều ACG.
A C B D G
Có ngay AB = AC = AG và ^BAG = ^BAC + ^CAG = 900 => \(\Delta\)BAG vuông cân tại A
Suy ra ^CBG = ^ABC - ^ABG = 300 = ^DAB (1)
Cũng dễ thấy ^ADB = 1350; ^BCG = ^ACB + ^ACG = 1350 => ^BCG = ^ADB (2)
Từ (1) và (2) suy ra \(\Delta\)CGB ~ \(\Delta\)DBA (g.g). Từ đây \(\frac{AD}{BC}=\frac{AB}{BG}=\frac{1}{\sqrt{2}}\)
Vậy \(AD=\frac{BC}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)(cm).
B A C D E
Trên nửa mặt phẳng bờ BC chứa A dựng \(\Delta\)BCE vuông cân tại E
Khi đó ^EBA = ^ABC - ^EBC = 300 = ^DAB
\(\Delta\)AEC = \(\Delta\)AEB (c.c.c) => ^EAB = ^BAC/2 = 150 = ^DBA
Xét \(\Delta\)BEA và \(\Delta\)ADB có: AB chung, ^EAB = ^DBA, ^EBA = ^DAB
=> \(\Delta\)BEA = \(\Delta\)ADB (g.c.g) => AD = BE = \(\frac{BC}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)(cm).
a) góc ABD=75 độ
b) ko có tam giác DBC sao mà so sánh đc ( bn viết sai đề rồi )