Cho cot x = \(\sqrt{2}\) . tính giá trị biểu thức sau P=\(\dfrac{3sinx-2cosx}{12sin^3x+4cos^3x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tan x=-2
=>sin x/cosx=-2
=>sin x=-2*cosx
\(1+tan^2x=\dfrac{1}{cos^2x}\)
=>\(\dfrac{1}{cos^2x}=1+2=3\)
=>\(cos^2x=\dfrac{1}{3}\)
\(H=\dfrac{sin^3x+5\cdot cos^3x}{3\cdot sinx-2\cdot cosx}\)
\(=\dfrac{\left(-2\cdot cosx\right)^3+5\cdot cos^3x}{3\cdot\left(-2\right)\cdot cosx-2\cdot cosx}\)
\(=\dfrac{-8\cdot cos^3x+5\cdot cos^3x}{-6\cdot cos-2\cdot cosx}=\dfrac{-3\cdot cos^3x}{-8\cdot cosx}=\dfrac{3}{8}\cdot cos^2x\)
=3/8*1/3
=1/8
a) Ta có: \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}-\dfrac{3x+3}{x-9}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
b) Ta có: \(x=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{2}+1-\sqrt{2}+1\)
=2
Thay x=2 vào A, ta được:
\(A=\dfrac{-3}{3+\sqrt{2}}=\dfrac{-9+3\sqrt{2}}{7}\)
1) Sửa đề: x=0,09
Thay x=0,09 vào A, ta được:
\(A=\dfrac{\sqrt{0.09}}{\sqrt{0.09}-1}=\dfrac{0.3}{0.3-1}=\dfrac{0.3}{-0.7}=\dfrac{-3}{7}\)
a: ĐKXĐ: \(x\ge\dfrac{1}{3}\)
b: ĐKXĐ: \(x< \dfrac{15}{2}\)
c: ĐKXĐ: \(x\le0\)
a: \(Q=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
b: Khi x=4+2căn 3 thì \(Q=\dfrac{\sqrt{3}+1-2}{\sqrt{3}+1+2}=\dfrac{-3+2\sqrt{3}}{3}\)
c: Q=3
=>3căn x+6=căn x-2
=>2căn x=-8(loại)
d: Q>1/2
=>Q-1/2>0
=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{1}{2}>0\)
=>2căn x-4-căn x-2>0
=>căn x>6
=>x>36
d: Q nguyên
=>căn x+2-4 chia hết cho căn x+2
=>căn x+2 thuộc Ư(-4)
=>căn x+2 thuộc {2;4}
=>x=0 hoặc x=4(nhận)
a: \(P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}=\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\)
\(M=\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)
b: \(A=\dfrac{-3x+4x+7}{\sqrt{x}+3}=\dfrac{x+7}{\sqrt{x}+3}=\dfrac{x-9+16}{\sqrt{x}+3}\)
=>\(A=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\sqrt{16}-6=2\)
Dấu = xảy ra khi x=1
\(tanx=\dfrac{1}{cotx}=\dfrac{1}{\sqrt[]{2}}=\dfrac{\sqrt[]{2}}{2}\left(tanx.cotx=1\right)\)
\(1+tan^2x=\dfrac{1}{cos^2x}\Rightarrow cos^2x=\dfrac{1}{1+tan^2x}=\dfrac{1}{1+\dfrac{1}{2}}\)
\(\Rightarrow cos^2x=\dfrac{2}{3}\Rightarrow cosx=\sqrt[]{\dfrac{2}{3}}\)
\(tanx=\dfrac{sinx}{cosx}\Rightarrow sinx=tanx.cosx=\dfrac{1}{\sqrt[]{2}}.\dfrac{\sqrt[]{2}}{\sqrt[]{3}}=\dfrac{\sqrt[]{3}}{3}\)
\(P=\dfrac{3sinx-2cosx}{12sin^3x+4cos^3x}=\dfrac{3.\dfrac{\sqrt[]{3}}{3}-2.\dfrac{\sqrt[]{2}}{\sqrt[]{3}}}{12.\left(\dfrac{\sqrt[]{3}}{3}\right)^3+4.\left(\sqrt[]{\dfrac{2}{3}}\right)^3}\)
\(=\dfrac{\sqrt[]{3}-\dfrac{2\sqrt[]{6}}{3}}{12.\left(\dfrac{\sqrt[]{3}}{3}\right)^3+4.\left(\sqrt[]{\dfrac{2}{3}}\right)^3}\)