221. Tìm x biết:
a) \(\left|15x-1\right|>31\)
b) \(\left|2x-5\right|+4\ge25\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3x-31=-40\Rightarrow3x=-9\Rightarrow x=-3\)
\(b,-3x+37=\left(-4\right)^2\Rightarrow-3x=-21\Rightarrow x=7\)
\(c,\left|2x+7\right|=5\)
\(\Rightarrow\left\{{}\begin{matrix}2x+7=5\Rightarrow x=-1\\2x+7=-5\Rightarrow x=-6\end{matrix}\right.\)
\(d,-x+21=15+2x\Rightarrow3x=6\Rightarrow x=2\)
a) Ta có: 3x-31=-40
\(\Leftrightarrow3x=-9\)
hay x=-3
Vậy: x=-3
b) Ta có: \(-3x+37=\left(-4\right)^2\)
\(\Leftrightarrow-3x+37=16\)
\(\Leftrightarrow-3x=16-37=-21\)
hay x=7
Vậy: x=7
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Rightarrow2x^2-10x-3x-2x^2=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
b) \(3x\left(1-2x\right)+2\left(3x+7\right)=29\)
\(\Rightarrow3x-6x^2+6x+14=29\)
\(\Rightarrow-6x^2+9x-15=0\)
\(\Rightarrow-6\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{93}{8}=0\)
\(\Rightarrow-6\left(x-\dfrac{3}{4}\right)^2-\dfrac{93}{8}=0\)(vô lý)
Vậy \(S=\varnothing\)
a: \(\Leftrightarrow2x+\dfrac{7}{2}=\dfrac{16}{3}:\dfrac{8}{3}=2\)
=>2x=-3/2
hay x=-3/4
b: 2x+3=5
=>2x=2
hay x=1
c: =>3(x-2)=4(5+x)
=>4x+20=3x-6
=>x=-26
\(c,\Rightarrow\left[{}\begin{matrix}-2\left(x+2\right)+\left(4-x\right)=11\left(x< -2\right)\\2\left(x+2\right)+\left(4-x\right)=11\left(-2\le x\le4\right)\\2\left(x+2\right)+\left(x-4\right)=11\left(x>4\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{11}{3}\left(tm\right)\\x=3\left(tm\right)\\x=\dfrac{11}{3}\left(ktm\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{3}\end{matrix}\right.\)
\(a,\Rightarrow\left[{}\begin{matrix}x+\dfrac{5}{2}=3x+1\\x+\dfrac{5}{2}=-3x-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{7}{8}\end{matrix}\right.\)
a) (x-1):2/3=-2/5
=>x-1=-4/15
=>x=11/15
b) |x-1/2|-1/3=0
=>|x-1/2|=1/3
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\\x=-\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{1}{6}\end{matrix}\right.\)
c) Tương Tự câu B
\(a,1-3\left|2x-3\right|=-\dfrac{1}{2}\\ 3\left|2x-3\right|=1+\dfrac{1}{2}\\ 3\left|2x-3\right|=\dfrac{3}{2}\\ \left|2x-3\right|=\dfrac{3}{2}:3\\ \left|2x-3\right|=\dfrac{9}{2}\\ \Rightarrow\left[{}\begin{matrix}2x-3=\dfrac{9}{2}\\2x-3=-\dfrac{9}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=\dfrac{15}{2}\\2x=-\dfrac{3}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)
Vậy `x in {15/4;-3/4}`
\(b,\left(\left|x\right|-0,2\right)\left(x^3-8\right)=0\\ \left(\left|x\right|-0,2\right)\left(x-2\right)\left(x^2+2x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}\left|x\right|-0,2=0\\x-2=0\\x^2+2x+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\left|x\right|=0,2\\x=2\\\left(x+1\right)^2+3=0\left(lọai\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0,2\\x=-0,2\\x=2\end{matrix}\right.\)
Vậy `x in {+-0,2;2}`
\(a,\Rightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}5x=\dfrac{1}{7}\\5x=-\dfrac{13}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{35}\\x=-\dfrac{13}{35}\end{matrix}\right.\\ b,\Rightarrow\left(-\dfrac{1}{8}\right)^x=\dfrac{1}{64}=\left(-\dfrac{1}{8}\right)^2\Rightarrow x=2\\ c,\Rightarrow\left(x-2\right)\left(2x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\\ d,\Rightarrow\left(x+1\right)^{x+10}-\left(x+1\right)^{x+4}=0\\ \Rightarrow\left(x+1\right)^{x+4}\left[\left(x+1\right)^6-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\\left(x+1\right)^6=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x+1=1\\x+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\\ e,\Rightarrow\dfrac{3}{4}\sqrt{x}=\dfrac{5}{6}\left(x\ge0\right)\\ \Rightarrow\sqrt{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{100}{81}\)
a) \(\left|15x-1\right|>31\)
\(\Rightarrow-31< 15x-1< 31\)
\(\Rightarrow-31+1< 15x-1+1< 31+1\)
\(\Rightarrow-30< 15x< 32\)
\(\Rightarrow-2< x< \frac{32}{15}\)
b) \(\left|2x-4\right|+4\ge25\)
\(\Rightarrow\left|2x-4\right|+4-4\ge25-4\)
\(\Rightarrow\left|2x-4\right|\ge21\)
\(\Rightarrow\hept{\begin{cases}2x-4\le-21\\2x-4\ge21\end{cases}}\Rightarrow\hept{\begin{cases}2x\le-17\\2x\ge25\end{cases}}\Rightarrow\hept{\begin{cases}x\le-\frac{17}{2}\\x\ge\frac{25}{2}\end{cases}}\)
Vậy \(x\le-\frac{17}{2}\) hoặc \(x\ge\frac{25}{2}\)thì thõa mãn đề bài
a) \(\left|15x-1\right|>31\)
\(\Rightarrow\left\{x\in N\right\}\left\{x>2\right\}\)