cho góc xOy < 90 độ . Lấy A,B thuộc Ox (A ở giữa O và B) C,D thuộc Oy (C ở giữa O và D) Chứng minh AB+CD<AD+BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có:OC=OA;AB=CD
=>OC+CD=OA+AB
=>OD=OB =>\(\Delta OBD\)cân tại O
b,Vì \(\Delta OBD\)cân tại O
=> \(\widehat{OBD}=\frac{180^o-60^o}{2}=60^o\)
c,Do OA=OC => \(\Delta OAC\)cân tại O
=> \(\widehat{OAC}=\frac{180^o-60^o}{2}=60^o\)
=>\(\widehat{OBD}=\widehat{OAC}\)
=> AC//CD(do\(\widehat{OBD}\)và\(\widehat{OAC}\) ở vị rí đồng vị)
Lại sai đề." cắt đường trung trực của AC và BD ở M " là cái gì???. Phải là M là giao điểm hai đường trung trực của AC và BD
_________________________
Giải:
M thuộc đường trung trực của BD => MB = MD
M thuộc đường trung trực của AB => MA = MC
Xét \(\Delta\)ABM và \(\Delta\)CDM có: AB = CD ; MA = MC ; MB = MD
=> \(\Delta\)ABM = \(\Delta\)CDM ( c-c-c)
=> ^BAM = ^DCM
mà ^BAM + ^MAO = ^DCM + MCO (= 180 độ )
=> ^MAO = ^MCO
thông cảm cho, dạo này già rùi mắt mũi lờ mờ ko thấy chữ @.@
a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có
OC chung
góc AOC=góc BOC
=>ΔOAC=ΔOBC
b: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có
CA=CB
góc ACD=góc BCE
=>ΔCAD=ΔCBE
=>CE=CD và AD=BE
c: Xét ΔOED có OA/AD=OB/BE
nên AB//ED
a/ Xét t/g OAD và t/g OBC cos
AO = OB
\(\widehat{xOy}\) : chung
OD = OC
=> t/g OAD = t/g OBC
=> AD = BC
b/ Không rõ đề.
c/ Có
OC = ODOA = OB
=> AC = BD
Có \(\widehat{OAD}=\widehat{OBE}\) (do t/g OAD = t/g OBC)
=> \(180^o-\widehat{OAD}=180^o-\widehat{OBE}\)
=> \(\widehat{CAD}=\widehat{CBD}\)
Xét t/g AEC và t/g BED có
\(\widehat{CAD}=\widehat{CBD}\)
AC = BD\(\widehat{OCB}=\widehat{ODA}\)
=> t/g AEC = t/g BED (g.c.g)
=> AE = BE
Xét t/g OAE và t/g OBE có
OA = OB
AE = BEOE : chung
=> t/g OAE = t/g OBE
=> ^xOE = ^yOe
=> OE là pg góc xOy
a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có
OC chung
góc AOC=góc BOC
=>ΔOAC=ΔOBC
=>OA=OB và CA=CB
b: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có
CA=CB
góc ACD=góc BCE
=>ΔCAD=ΔCBE
=>CD=CE và AD=BE
c: Xét ΔOED có OA/AD=OB/BE
nên AB//ED
Gọi giao của AD và BC là O
AB<OA+OB
CD<OC+OD
=>AB+CD<OA+OB+OC+OD
=>AB+CD<AD+BC