viết tổng sau dưới dạng luỹ thừa của 2:T=2+2^2+2^3+...+2^2008
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 2+2^2+2^3+2^4+....+2^1975
2A=2^2+2^3+2^4+...+2^1976
A=1^1976-2
nke
\(A=2^2+2^3+...+2^{2018}\)
\(2A=2^3+2^4+...+2^{2019}\)
\(2A-A=\left(2^3+2^4+...+2^{2019}\right)-\left(2^2+2^3+...+2^{2018}\right)\)
\(A=2^{2019}-2^2\)
HOK TỐT .
\(A=2^2+2^3+2^4+...+2^{2018}\)
\(\Rightarrow2A=2^3+2^4+2^5+...+2^{2019}\)
\(\Rightarrow2A-A=\left(2^3+2^4+2^5+...+2^{2019}\right)-\left(2^2+2^3+2^4+...+2^{2018}\right)\)
\(\Rightarrow A=2^{2019}-2^2\)
Vậy \(A=2^{2019}-2^2\)
_Chúc bạn học tốt_
Ta có: 27.(-2)3.(-7).(+49)
= 33 . (-2)3 . (-7) . (-7)2
= 33 . (-2)3 . (-7)3 = [3 . (-2) . (-7)]3 = 423
(Lưu ý: 49 = (-7)) . (-7) = (-7)2
a) 272 : 253
= (33)2 : (52)3
= 36 : 56
\(=\left(\frac{3}{5}\right)^6\)
b) 254 : 28
= (52)4 : 28
= 58 : 28
\(=\left(\frac{5}{2}\right)^8\)
a, \(A=1+2+2^2+2^3+...+2^{100}\)
=> \(2A=2+2^2+2^3+2^4+...+2^{101}\)
=> \(A=2A-A=2^{101}-1\)
=> \(A+1=2^{101}\)
b, \(B=3+3^2+3^3+...+3^{2005}\)
\(3A=3^2+3^3+3^4+....+3^{2006}\)
=> \(2A=3A-A=3^{2006}-3\)
=> \(2A+3=3^{2006}\)là lũy thừa của 3
=> Đpcm
a) Ta có: \(A=1+2+2^2+2^3+.....+2^{100}\)
\(\Rightarrow2A=2+2^2+2^3+........+2^{101}\)
Lấy 2A-A ta có:
\(2A-A=\left(2+2^2+2^3+2^4+.....+2^{101}\right)\)\(-\left(1+2+2^2+2^3+.......+2^{100}\right)\)
\(\Rightarrow A=2^{101}-1\)
\(\Rightarrow A+1=2^{101}-1+1\)
\(\Rightarrow A+1=2^{101}\)
b) Ta có: \(B=3+3^2+3^3+.....+3^{2005}\)
\(\Rightarrow3B=3^2+3^3+3^4+.....+3^{2006}\)
\(\Rightarrow3B-B=\left(3^2+3^3+3^4+....+3^{2006}\right)\)\(-\left(3+3^2+3^3+......+3^{2005}\right)\)
\(\Rightarrow2B=3^{2006}-3\)
\(\Rightarrow2B+3=3^{2006}-3+3\)
\(\Rightarrow2B+3=3^{2006}\)
Vậy 2B+3 là lũy thừa của 3 ĐPCM
\(0,001=\frac{1}{1000}=\frac{1}{10^3}=10^{-3}\)
\(0,0001=\frac{1}{10000}=\frac{1}{10^4}=10^{-4}\)
\(0,00015=\frac{3}{20000}=\frac{3}{2}\times\frac{1}{10000}=\frac{3}{2}\times\frac{1}{10^4}=\frac{3}{2}\times10^{-4}\)
\(5^{-a}=\frac{1}{5^a}\)
\(3,5\times10^{-5}=3,5\times\frac{1}{10^5}\)
\(\left(\frac{2}{3}\right)^{-2}==\frac{1}{\left(\frac{2}{3}\right)^2}=\left(\frac{3}{2}\right)^2\)
\(10^{-3}=\frac{1}{10^3}=\frac{1}{1000}\)
\(2T=2^2+2^3+2^4+...+2^{2009}\)
\(T=2T-T=2^{2009}-2=2\left(2^{2008}-1\right)\)
T= 2+22+23+...+22008
2T=22+23+24+...+22009
2T-T= 22009-2
T= 22009-2 = (22009-2)1