K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{199}{200}\)( 1 )

Biểu thức C là tích của 100 phân số của hơn 1, trong đó các tử đều lẻ, các mẫu đều chẵn. Ta đưa ra biểu thức trung gian là một tích các phân số mà các tử đều chẵn, các mẫu đều lẻ. Thêm 1 vào tử và mẫu của mỗi phân số của C, giá trị của mỗi phân số tăng thêm, do đó :

\(C< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{200}{201}\)( 2 )

Nhân ( 1 ) với ( 2 ) theo từng vế ta được :

\(C^2< \left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{199}{200}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{200}{201}\right)\)

Vế phải của bất đẳng thức trên bằng :

\(\frac{1.\left(3.5...199\right)}{2.4.6...200}.\frac{2.4.6...200}{\left(3.5...199\right).201}=\frac{1}{201}\)

Vậy \(C^2< \frac{1}{201}\)

11 tháng 8 2018

Ta có:\(C=\dfrac{1}{2}.\dfrac{3}{4}.....\dfrac{199}{200}\)

\(\Rightarrow C< \dfrac{2}{3}.\dfrac{4}{5}.....\dfrac{200}{201}\)

\(\Rightarrow C^2< \dfrac{2}{3}.\dfrac{4}{5}.....\dfrac{200}{201}.\dfrac{1}{2}.\dfrac{3}{4}.....\dfrac{199}{200}\)

\(\Rightarrow C^2< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.....\dfrac{199}{200}.\dfrac{200}{201}\)

\(\Rightarrow C^2< \dfrac{1}{201}\) (đpcm)

11 tháng 8 2018

good luckbanhqua

5 tháng 10 2015

a/ P=1-1/2+1/3-1/4+....+1/199-1/200

= 1+1/2+1/3+1/4+1/5+...+1/200 - 2.(1/2+1/4+...+1/200)

= 1+1/2+1/3+1/4+1/5+...+1/200 - 1-1/2-1/3-...-1/100

=1/101+1/102+...+1/200

b/ k-k/2+ k/3- k/4+...+k/199-k/200

=k+k/2+k/2+...+k/199+k/200 -2(k/2+k/4+k/6+...+k/200)

=k+k/2+k/2+...+k/199+k/200-k-k/2-k/3-...-k/100

=k/101+k/102+...+k.200

1 tháng 1 2018

ta có 1/2<2/3 ; 3/4<4/5;5/6<6/7;...;199/200<200/201

suy ra A^2=1/2^2*3/4^2*5/6^2*...*199/200^2<1/2*2/3*3/4*4/5*5/6*6/7*...*199/200/200/201

suy ra A^2<1/201(đpcm)

2 tháng 3 2018

Ta có:

\(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{199}{200}< \frac{200}{201}\)

\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{199}{200}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{200}{201}\)

\(\Rightarrow A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{200}{201}\)

\(\Rightarrow A^2< \left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{200}{201}\right)\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{199}{200}\right)\)

\(\Rightarrow A^2< \frac{1}{201}\left(đpcm\right)\)

2 tháng 9 2017

Ta có : \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{199}{200}< \frac{200}{201}\)

Đặt \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{200}{201}\)

Nên \(A< B\)

\(\Rightarrow A.B=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{199}{200}\right)\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{200}{201}\right)\)

\(\Rightarrow A.B=\frac{1}{201}\)

Vì \(A< B\)

\(\Rightarrow A^2< A.B=\frac{1}{201}\)

\(\Rightarrow A^2< \frac{1}{201}\)

\(\RightarrowĐPCM\)