dùng hằng đẳng thức tính:
(1+3x)(3x-1).2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x^2-x-1\right)\left(3x^2+x-1\right)\)
\(=\left(3x^2-1\right)^2-x^2\)
\(=9x^4-6x^2+1-x^2\)
\(=9x^4-7x^2+1\)
a) Ta có: \(a^3y^3+125\)
\(=\left(ay+5\right)\left(a^2y^2-5ay+25\right)\)
b) Ta có: \(8x^3-y^3-6xy\cdot\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)-6xy\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+2xy-6xy+y^2\right)\)
\(=\left(2x-y\right)^3\)
\(\left(a-x-y\right)^3-\left(a+x-y\right)^3\)
\(=\left[\left(a-x-y\right)-\left(a+x-y\right)\right]\left[\left(a-x-y\right)^2+\left(a-x-y\right)\left(a+x-y\right)+\left(a+x-y\right)^2\right]\)
\(=-2x.\left[a^2+x^2+y^2-2ax+2xy-2ay+\left(a-y\right)^2-x^2+a^2+x^2+y^2+2ax-2xy-2ay\right]\)
\(=-2x\left[a^2+x^2+y^2-2ax+2xy-2ay+a^2-2ay+y^2-x^2+a^2+x^2+y^2+2ax-2xy-2ay\right]\)
\(=-2x\left(3a^2+x^2+3y^2-4ay\right)\)
\(A=x^3+3x^2+3x+6\)
\(=x^3+3x^2+3x+1+5\)
\(=\left(x+1\right)^3+5\)
Thay x = 19 vào biểu thức \(A=\left(x+1\right)^3+5\)ta được:
\(A=\left(19+1\right)^3+5=20^3+5=8000+5=8005\)
Vậy giá trị của biểu thức A tại x = 19 là 8005.
\(B=x^3-3x^2+3x\)
\(=x^3-3x^2+3x-1+1\)
\(=\left(x-1\right)^3+1\)
Thay x = 11 vào biểu thức \(B=\left(x-1\right)^3+1\)ta được:
\(B=\left(11-1\right)^3+1=10^3+1=1000+1=1001\)
Vậy giá trị của biểu thức B tại x = 11 là 1001.
Bài 2:
a: \(A=\left(x+1\right)^3+5=20^3+5=8005\)
b: \(B=\left(x-1\right)^3+1=10^3+1=1001\)
=(3x + 1)(3x - 1).2 = (9x2 - 1).2 = 18x2 - 2
\(\left(1+3x\right)\left(3x-1\right).2\)
\(=\left[\left(3x\right)^2-1^2\right].2\)
\(=\left(9x^2-1\right).2\)
\(=18x^2-2\)