K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Vì \(ABCD\) là hình vuông nên \(AB = BC = CD = DA\); \(\widehat A = \widehat B = \widehat C = \widehat D = 90^\circ \)

Mà \(AE = BF = CG = HD\) (gt) suy ra \(BE = CF = DG = AH\)

Xét \(\Delta AEH\) và \(\Delta DHG\) ta có:

\(\widehat {\rm{A}} = \widehat {\rm{D}} = 90\)

\(AE = GH\) (gt)

\(AH = DG\) (gt)

Suy ra \(\Delta AEH = \Delta DHG\) (c-g-c)

Suy ra \(\widehat {{\rm{AEH}}} = \widehat {{\rm{DHG}}}\) (hai góc tương ứng)

Mà \(\widehat {AEH} + \widehat {AHE} = 90^\circ \)

Suy ra \(\widehat {DHG} + \widehat {AHE} = 90^\circ \)

Suy ra \(\widehat {EHG} = 90^\circ \)

Chứng minh tương tự ta được \(\widehat {HGF} = 90^\circ ;\;\widehat {GFE} = 90^\circ \)

Vậy tứ giác \(EFGH\) là một góc vuông

b) Vì \(\Delta AEH = \Delta DHG\) (cmt)

Suy ra \(HE = HG\) (2)

Từ (1) và (2) suy ra \(EFGH\) là hình vuông

c) chứng minh tương tự câu b ta có: \(HE = EF\); \(HE = FG\)

Khi đó \(EFGH\) có \(HE = HG = EF = FG\) nên là hình thoi (3)

Tứ giác \(EFGH\) có ba góc vuông nên là hình chữ nhật (4)

Từ (3) và (4) suy ra \(EFGH\) là hình vuông

a) Xét ΔABC có

E là trung điểm của AB(gt)

F là trung điểm của BC(gt)

Do đó: EF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒EF//AC và \(EF=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔADC có

H là trung điểm của AD(gt)

G là trung điểm của CD(gt)

Do đó: HG là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)

⇒HG//AC và \(HG=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra HG//EF và HG=EF

Xét ΔABD có 

E là trung điểm của AB(gt)

H là trung điểm của AD(gt)

Do đó: EH là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)

⇒EH//BD và \(EH=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)

Ta có: EH//BD(cmt)

BD⊥AC(gt)

Do đó: EH⊥AC(Định lí 2 từ vuông góc tới song song)

Ta có: HG//AC(cmt)

EH⊥AC(Cmt)

Do đó: HG⊥HE(Định lí 2 từ vuông góc tới song song)

hay \(\widehat{EHG}=90^0\)

Xét tứ giác EHGF có 

HG//EF(cmt)

HG=FE(cmt)

Do đó: EHGF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành EHGF có \(\widehat{EHG}=90^0\)(cmt)

nên EHGF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: EFGH là hình chữ nhật(cmt)

nên \(S_{EFGH}=EF\cdot EH\)

\(\Leftrightarrow S_{EFGH}=\dfrac{AC}{2}\cdot\dfrac{BD}{2}=\dfrac{10}{2}\cdot\dfrac{8}{2}=5\cdot4=20cm^2\)

Vậy: Diện tích tứ giác EFGH khi AC=10cm và BD=8cm là 20cm2

c) Hình chữ nhật EFGH trở thành hình vuông khi EH=HG

hay AC=BD

Vậy: Khi tứ giác ABCD có thêm điều kiện AC=BD thì EFGH trở thành hình vuông

4 tháng 3 2019

* Do ABCD là hình vuông nên AB = BC = CD = DA.

Theo giả thiết ta có: AE = BF = CG = DH nên ta có:

AB – AE = BC – BF = CD – CG = DA – DH

⇔ BE = CF= DG = HA

* Xét các tam giác vuông AEH, BFE, CGF, DHG có:

AE= BF = CG = DH (giả thiết)

HA= BE = CF = DG (chứng minh trên)

⇒ ΔAEH = ΔBFE = ΔCGF = ΔDHG ( c.g.c)

Suy ra: HE = EF = FG = GH (các cạnh tương ứng)

Giải bài 82 trang 108 Toán 8 Tập 1 | Giải bài tập Toán 8

* Tứ giác EFGH là hình thoi có 1 góc bằng 90o nên EFGH là hình vuông.

3 tháng 9 2017

toi xin loi kiet le tuan nha toi hieu sai cau hoi

+ E là trung điểm AB, F là trung điểm BC

⇒ EF là đường trung bình của tam giác ABC

⇒ EF // AC và EF = AC/2

+ H là trung điểm AD, G là trung điểm CD

⇒ HG là đường trung bình của tam giác ACD

⇒ HG // AC và HG = AC/2.

+ Ta có:

EF //AC, HG//AC ⇒ EF // HG.

EF = AC/2; HG = AC/2 ⇒ EF = HG

⇒ tứ giác EFGH là hình bình hành.

15 tháng 2 2020

có thể giúp mk trả lời phần a ko ạ

30 tháng 8 2016

THam khảo nha : 

Xét bài toán: Cho tam giác ABC.ABC. Dựng hình vuông ABEFABEF và ACGHACGH phía ngoài tam giác. P,P, QQ theo thứ tự là tâm của hình vuông ABEFABEF và ACGH.ACGH. Lấy MMtrung điểm BC.BC. Chứng minh tam giác PQMPQM vuông cân tại M.M.

Lời giải: 

Dễ dàng chứng minh được MPMP và MQMQ theo thứ tự là đường trung bình của tam giác BCFBCF và BCH.BCH.

Suy ra MP∥CF ; MP=12CFMP∥CF ; MP=12CF và MQ∥BH ; MQ=12BH.   (1)MQ∥BH ; MQ=12BH.   (1)

Ta có: 

ˆBAH=ˆBAF+ˆFAH=90∘+ˆFAHBAH^=BAF^+FAH^=90∘+FAH^

ˆCAF=ˆCAH+ˆFAH=90∘+ˆFAHCAF^=CAH^+FAH^=90∘+FAH^

Do đó ˆBAH=ˆCAF.BAH^=CAF^.

Từ đó chứng minh được △AFC=△ABH (c.g.c)△AFC=△ABH (c.g.c)

⇒ˆFCA=ˆBHA⇒FCA^=BHA^

Gọi II và OO theo thứ tự là giao điểm của CFCF với BHBH và AH.AH.

Khi đó ˆOCA=ˆIHOOCA^=IHO^

Mà ˆOCA+ˆAOC=90∘OCA^+AOC^=90∘ và ˆAOC=ˆIOHAOC^=IOH^ ((đối đỉnh))

Nên ˆIHO+ˆIOH=90∘,IHO^+IOH^=90∘, suy ra ˆHIO=90∘HIO^=90∘

Do đó IH⊥IOIH⊥IO hay BH⊥CF.    (2)BH⊥CF.    (2)

Vì △AFC=△ABH (c.g.c)△AFC=△ABH (c.g.c) nên CF=BH.     (3)CF=BH.     (3)

Từ (1),(1), (2)(2) và (3)(3) suy ra MP=MQMP=MQ và MP⊥MQ.MP⊥MQ. Vậy tam giác MPQMPQ vuông cân tại M.M.

★★★★★★★★★★★★★★★★

Quay lại bài toán. Gọi MM là trung điểm ACAC

Áp dụng kết quả trên, ta chứng minh được tam giác EMFEMF và HMGHMG vuông cân tại M.M.

Từ đó chứng minh được △MEG=△MFH (c.g.c)△MEG=△MFH (c.g.c)

Rồi suy ra EG=HFEG=HF và EG⊥HF.EG⊥HF.

b)b) Gọi PP và QQ lần lượt là trung điểm HFHF và EGEG

Từ △MEG=△MFH (c.g.c)△MEG=△MFH (c.g.c) dễ dàng chứng minh được △MPF=△MQE (c.g.c)△MPF=△MQE (c.g.c)

Suy ra MP=MQMP=MQ và ˆPMF=ˆQME ⇒ ˆPMQ=ˆEMF=90∘PMF^=QME^ ⇒ PMQ^=EMF^=90∘

Do đó tam giác MPQMPQ vuông cân tại MM

Gọi NN trung điểm BD.BD. Chứng minh tương tự như trên, ta được tam giác NPQNPQ vuông cân tại N.N.

Suy ra tứ giác MPNQMPNQ là hình vuông.

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Ta có:

\(\widehat {\rm{E}} + \widehat {\rm{F}} = 95^\circ  + 85^\circ  = 180^\circ \)

Mà hai góc ở vị trí Trong cùng phía

Suy ra \(EH\;{\rm{//}}\;FG\)

Suy ra: \(EFGH\) là hình thang

b) Xét hình thang \(EFGH\) ta có: \(\widehat E + \widehat F + \widehat G + \widehat H = 360^\circ \)

\(\begin{array}{l}95^\circ  + 85^\circ  + 27^\circ  + \widehat H = 360^\circ \\\widehat H = 153^\circ \end{array}\)