K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

\(ABCD\) là hình chữ nhật (gt)

Suy ra \(AB = CD\); \(AD = BC\); \(AB\) // \(CD\); \(AD\) // \(BC\) (3)

\(\widehat A = \widehat B = \widehat C = \widehat D = 90^\circ \) (1)

TH1:

Nếu \(AB = BC\) (gt) thì  \(AB = BC = CD = DA\) (2)

Từ (1), (2) suy ra \(ABCD\) là hình vuông

TH2:

Nếu \(AC\) vuông góc với \(BD\)

Mà \(ABCD\) cũng là hình bình hành

Suy ra \(ABCD\) là hình thoi

Suy ra \(AB = BC = CD = DA\) (4)

Từ (1) và (4) suy ra \(ABCD\) là hình vuông

TH3:

\(AC\) là phân giác của góc \(BAD\)

Mà \(ABCD\) là hình bình hành

Suy ra \(ABCD\) là hình thoi

Suy ra \(AB = BC = CD = DA\) (5)

Từ (1) và (5) suy ra \(ABCD\) là hình vuông

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Xét \(\Delta ABC\) và \(\Delta CDA\) ta có:

\(AB = CD\) (gt)

\(AD = BC\) (gt)

\(AC\) chung

Suy ra: \(\Delta ABC = \Delta CDA\) (c-c-c)

\( \Rightarrow \widehat {BAC} = \widehat {ACD}\) (hai góc tương ứng)

Mà hai góc ở vị trí so le trong

Suy ra \(AB\) // \(CD\)

Chứng minh tương tự \(\Delta ADB = \Delta CBD\) (c-c-c)

\( \Rightarrow \widehat {ABD} = \widehat {CDB}\) (hai góc tương ứng)

Mà hai góc ở vị trí so le trong
\( \Rightarrow AD\;{\rm{//}}\;BC\)

b) Xét \(\Delta ABC\) và \(\Delta CDA\) ta có:

\(AB = CD\) (gt)

\(\widehat {{\rm{BAC}}} = \widehat {{\rm{ACD}}}\) (do \(AB\) // \(CD\))

\(AC\) chung

Suy ra: \(\Delta ABC = \Delta CDA\) (c-g-c)

\( \Rightarrow \widehat {BCA} = \widehat {CAD}\) (hai góc tương ứng)

Mà hai góc ở vị trí so le trong

Suy ra \(AD\;{\rm{//}}\;BC\)

c) Xét \(\Delta ABC\) và \(\Delta CDA\) ta có:

\(BC = AD\) (gt)

\(\widehat {{\rm{BCA}}} = \widehat {{\rm{CDA}}}\) (do \(AD\) // \(BC\))

\(AC\) chung

Suy ra \(\Delta ABC = \Delta CDA\) (c-g-c)

Suy ra \(\widehat {{\rm{BAC}}} = \widehat {{\rm{ACD}}}\) (hai góc tương ứng)

Mà hai góc ở vị trí so le trong

Suy ra: \(AB\) // \(CD\)

d) Xét tứ giác \(ABCD\) ta có:

\(\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \)

Mà \(\widehat A = \widehat C\); \(\widehat B = \widehat D\) (gt)

Suy ra \(\widehat A + \widehat D = 180^\circ ;\;\widehat A + \widehat B = 180^\circ \)

Mà hai góc ở vị trí trong cùng phía

Suy ra \(AB\;{\rm{//}}\;CD;\;AD\;{\rm{//}}\;BC\)

e) Xét \(\Delta APB\) và \(\Delta CPD\) ta có:

\(PA = PC\) (gt)

\(\widehat {{\rm{APB}}} = \widehat {{\rm{CPD}}}\) (đối đỉnh)

\(PB = PD\) (gt)

Suy ra: \(\Delta APB = \Delta CPD\) (c-g-c)

Suy ra: \(\widehat {BAP} = \widehat {PCD}\) (hai góc tương ứng)

Mà hai góc ở vị trí so le trong

Suy ra \(AB\;{\rm{//}}\;CD\)

Chứng minh tương tự: \(\Delta APD = \Delta CPB\) (c-g-c)

Suy ra \(\widehat {{\rm{DAP}}} = \widehat {{\rm{BCP}}}\) (hai góc tương ứng)

Mà hai góc ở vị trí so le trong

Suy ra \(AD\) // \(BC\)

19 tháng 2 2018

a) HS tự chứng minh

b) Sử dụng tổng bốn góc trong tứ giác và chú ý  B ^ = D ^

22 tháng 12 2017

a)  ABCD là hình bình hành

\(\Rightarrow\)AB // CD

\(\Rightarrow\)\(\widehat{BAC}\)\(\widehat{ACD}\)   (slt)

AD là phân giác \(\widehat{BAC}\)\(\Rightarrow\)\(\widehat{DAC}\)= 1/2 \(\widehat{BAC}\)

CK là phân giác \(\widehat{ACD}\)\(\Rightarrow\)\(\widehat{ACK}\)= 1/2 \(\widehat{ACD}\)

suy ra:    \(\widehat{DAC}\) = \(\widehat{ACK}\)

mà  \(\widehat{DAC}\)và  \(\widehat{ACK}\) ở vị trí so le trong 

\(\Rightarrow\)AE // CK

22 tháng 12 2017

b)   Gọi O là giao điểm của AC và BD  (1)

\(\Rightarrow\)OA = OC

Xét   \(\Delta BAE\)và    \(\Delta DCK\)

\(\widehat{KDC}\)\(\widehat{EBA}\)  (GT)

AB = CD   (GT)

\(\widehat{KCD}\)\(\widehat{EAB}\)   (theo phần a)

suy ra  \(\Delta BAE\)​ = \(\Delta DCK\)

\(\Rightarrow\)AE = CK

mà   AE // CK

\(\Rightarrow\)AECK  là hình bình hành

mà OA = OC

\(\Rightarrow\)AC và  EK  cắt nhau tại O   (2)

Từ  (1)  và  (2)  \(\Rightarrow\)BD, AC, EK  đồng quy

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét 2 tam giác ABC và A’B’C có:

AB=A’B’ (gt)

\(\widehat A = \widehat {A'}\) (gt)

AC=A’C’ (gt)

\( \Rightarrow \Delta ABC = \Delta A'B'C'\)(c.g.c)

5 tháng 8 2016

b1  a) goi I la giao diem cua AD va BC

I A B C D

vi AB//DC => goc IDC = goc DAB (2 goc dong vi)

ma goc A =30  => goc IDC =30

lai co  goc IDC + goc ADC =180 ( I,D,A thang hang)

                                                     30+ goc ADC =180 => goc ADC=150

vi AB//DC => goc ICD = goc CBA (2 goc dong vi)

có goc ICD+ goc DCB =180 (I,C,B thang hang )

goc ICD+ 120=180   => goc ICD = 60 => goc ABC=60

5 tháng 8 2016

còn ý b) bạn làm tương tự nhé

b2

A B C D

vi DC =BC (gt) => tam giac DCB can tai C  => goc CDB = goc DBC (1)

vi DB la phan giac cua goc ADC => g ADB =g BDC  (2)

tu (1,2) => g ADB = g DBC

ma 2 goc nay o vi tri so le trong

=> AD// BC  => ABCD la hinh thang

25 tháng 9 2023

Tham khảo:

Gọi O là giao điểm của AC và BD.

a) Áp dụng công thức \(S = \frac{1}{2}ac.\sin B\), ta có:

\(\begin{array}{l}{S_{OAD}} = \frac{1}{2}.OA.OD.\sin \alpha ;\quad {S_{OBC}} = \frac{1}{2}.OB.OC.\sin \alpha ;\\{S_{OAB}} = \frac{1}{2}.OA.OB.\sin ({180^o} - \alpha );\quad {S_{OCD}} = \frac{1}{2}.OD.OC.\sin ({180^o} - \alpha ).\end{array}\)

Mà \(\sin ({180^o} - \alpha ) = \sin \alpha \)

\( \Rightarrow {S_{OAB}} = \frac{1}{2}.OA.OB.\sin \alpha ;\quad {S_{OCD}} = \frac{1}{2}.OD.OC.\sin \alpha .\)

\(\begin{array}{l} \Rightarrow {S_{ABCD}} = \left( {{S_{OAD}} + {S_{OAB}}} \right) + \left( {{S_{OBC}} + {S_{OCD}}} \right)\\ = \frac{1}{2}.OA.\sin \alpha .(OD + OB) + \frac{1}{2}.OC.\sin \alpha .(OB + OD)\\ = \frac{1}{2}.OA.\sin \alpha .BD + \frac{1}{2}.OC.\sin \alpha .BD\\ = \frac{1}{2}.BD.\sin \alpha .(OA + OC)\\ = \frac{1}{2}.AC.BD.\sin \alpha  = \frac{1}{2}.x.y.\sin \alpha .\end{array}\)

b) Nếu \(AC \bot BD\) thì \(\alpha  = {90^o} \Rightarrow \sin \alpha  = 1.\)

\( \Rightarrow {S_{ABCD}} = \frac{1}{2}.x.y.1 = \frac{1}{2}.x.y.\)