K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

MNPQ là hình thang cân

=>MP=NQ và MQ=NP

5 tháng 10 2017

Đáp án cần chọn là: C

Kẻ MH QP; NK QP tại H, K => MH // NK

Tứ giác MNHK có MN // HK nên MNHK là hình thang, lại có MH // NK

=> MN = HK; MH = NK

(Vì hình thang có hai cạnh bên song song thì hai cạnh bên bằng nhau và hai cạnh đáy bằng nhau)

Lại có

MQ = NP (vì MNPQ là hình thang cân) suy ra ΔMQH = ΔNKP (ch – cgv)

=> QH = KP =   Q P − H K 2

Mà HK = MN = 12 cm nên QH = KP = 40 − 12 2  = 14 cm

Mà M Q P ^  =  45 ° => ΔMHQ vuông cân tại H => MH = QH = 14 cm

Diện tích hình thang cân MNPQ là

SMNPQ = ( M N + P Q ) . M H 2 = ( 12 + 40 ) .14 2  = 364 c m 2

21 tháng 2 2018

Đáp án cần chọn là: B

Kẻ MH QP; NK QP tại H, K => MH // NK

Tứ giác MNHK có MN // HK nên MNHK là hình thang, lại có MH // NK

=> MN = HK; MH = NK

(Vì hình thang có hai cạnh bên song song thì hai cạnh bên bằng nhau và hai cạnh đáy bằng nhau)

Lại có

MQ = NP (vì MNPQ là hình thang cân) suy ra ΔMQH = ΔNKP (ch – cgv)

=> QH = KP =  Q P − H K 2

Mà HK = MN = 8 cm nên QH = KP = 30 − 8 2  = 8 cm

Mà M Q P ^  =  45 ° => ΔMHQ vuông cân tại H => MH = QH = 14 cm

Diện tích hình thang cân MNPQ là

SMNPQ = ( M N + P Q ) . M H 2 = ( 8 + 30 ) .11 2  = 209 c m 2 .

AH
Akai Haruma
Giáo viên
10 tháng 5 2021

Lời giải:

$S_{MNQ}=S_{MNP}$ (do chiều cao bằng nhau và chung đáy)

$\Rightarrow S_{MQK}=S_{NKP}=15$ (cm2)

Kẻ đường cao $NH$ xuống $MP$, đường cao $QT$ xuông $MH$

\(\frac{S_{MNP}}{S_{MQP}}=\frac{MN}{PQ}=\frac{3}{5}\)

\(\frac{S_{MNP}}{S_{MQP}}=\frac{NH}{QT}\)

\(1=\frac{S_{NPK}}{S_{MQK}}=\frac{NH\times PK}{QT\times MK}\Rightarrow \frac{NH}{QT}=\frac{MK}{PK}\)

Từ 3 điều trên suy ra $\frac{MK}{PK}=\frac{3}{5}$

$\frac{S_{MNK}}{S_{NPK}}=\frac{MK}{PK}=\frac{3}{5}$

$S_{MNK}=\frac{3}{5}\times S_{NPK}=\frac{3}{5}\times 15=9$ (cm2)

$\frac{S_{MQK}}{S_{PQK}}=\frac{MK}{PK}=\frac{3}{5}$

$\Rightarrow S_{PQK}=\frac{5}{3}\times S_{MQK}=\frac{5}{3}\times 15=25$ (cm2)

Diện tích hình thang:

$15+15+9+25=64$ (cm2)

AH
Akai Haruma
Giáo viên
10 tháng 5 2021

Hình vẽ:

12 tháng 8 2021

ta có MNPQ là hình thang=>MN//PQ

mà \(=\angle\left(NMP\right)=\angle\left(MNQ\right)=>\angle\left(NQP\right)=\angle\left(MPQ\right)\)

=>tam giác MNO cân tại O=>MO=NO

=>tam giác QOP cân tại O=>OQ=Op

=>MO+OP=NO+OQ=>NQ=MP

=>MNPQ là hình thang cân

\(=>\angle\left(M\right)=\angle\left(N\right)\left(1\right)\)

\(\angle\left(Q\right)=\angle\left(P\right)\left(2\right)\)

mà EF//PQ=>EF//MN

=>MNFE là hình thang(3)

từ (1)(3)=>MNFE là hình thang cân

=>EFPQ là hình thang(4)

(2)(4)=>EFPQ là hình thang cân

Ta có: \(\widehat{OMN}=\widehat{OPQ}\)

\(\widehat{ONM}=\widehat{OQP}\)

mà \(\widehat{OMN}=\widehat{ONM}\)

nên \(\widehat{OPQ}=\widehat{OQP}\)

Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)

nên ΔOMN cân tại O

Xét ΔOPQ có \(\widehat{OPQ}=\widehat{OQP}\)

nên ΔOPQ cân tại O

Ta có: OM+OP=MP

ON+OQ=QN

mà OM=ON

và OP=OQ

nên MP=QN

Hình thang MNPQ có MP=QN

nên MNPQ là hình thang cân

Suy ra: \(\widehat{EMN}=\widehat{FNM}\) và \(\widehat{EQP}=\widehat{FPQ}\)

Hình thang EMNF có \(\widehat{EMN}=\widehat{FNM}\)

nên EMNF là hình thang cân

Hình thang EQPF có \(\widehat{EQP}=\widehat{FPQ}\)

nên EQPF là hình thang cân

5 tháng 8 2016

a) Ta có: góc Q =góc P 

        => AQ = AP ( quan hệ giữa góc và cạnh đối diện)

     Ta có: AM + MQ = AQ

               AN + NP  = AP

       Mà MQ = NP ( MNPQ là hình thang cân).

            AQ = AP (cmt)

       => AM = AN => tam giác MAN cân tại A.

Câu b bạn tự làm nha     

29 tháng 12 2021

đáp án ?

Tham khảo:

loading...

loading...