Thực hiện phép tính:
a)\(\sqrt{x^2+x}=x\)
b) \(\sqrt{x^2-4x-3}=x-2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(B=\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right):\left(a-b\right)+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(B=\left[\dfrac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{a}+\sqrt{b}}\right]:\left(a-b\right)+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(B=\left[\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}\right]:\left(a-b\right)+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(B=\left(a-\sqrt{ab}+\sqrt{b}\right):\left(a-b\right)+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(B=\dfrac{a-\sqrt{ab}+b}{a-b}+\dfrac{2\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(B=\dfrac{a-\sqrt{ab}+b}{a-b}+\dfrac{2\sqrt{ab}-2b}{a-b}\)
\(B=\dfrac{a-\sqrt{ab}+b+2\sqrt{ab}-2b}{a-b}\)
\(B=\dfrac{a+\sqrt{ab}-b}{a-b}\)
a) \(\sqrt{2}A=\sqrt{2x-2\sqrt{x-2}.\sqrt{x+2}}+\sqrt{2x+2\sqrt{x-2}.\sqrt{x+2}}\) (\(x\ge2\) )
\(=\sqrt{\left(x+2\right)-2\sqrt{x+2}.\sqrt{x-2}+\left(x-2\right)}+\sqrt{\left(x+2\right)+2\sqrt{x+2}.\sqrt{x-2}+\left(x-2\right)}\)
\(=\sqrt{\left(\sqrt{x+2}-\sqrt{x-2}\right)^2}+\sqrt{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}\)
\(=\left|\sqrt{x+2}-\sqrt{x-2}\right|+\sqrt{x+2}+\sqrt{x-2}\)
\(=\sqrt{x+2}-\sqrt{x-2}+\sqrt{x+2}+\sqrt{x-2}\) ( do \(x+2>x-2\ge0\Leftrightarrow\sqrt{x+2}>\sqrt{x-2}\) )
\(=2\sqrt{x+2}\)
\(\Leftrightarrow A=\sqrt{2}.\sqrt{x+2}\)
Vậy...
b) \(B=\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right):\left(a-b\right)+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}.\dfrac{1}{a-b}+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\dfrac{a-\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{2\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\dfrac{a-\sqrt{ab}+b+2\sqrt{ab}-2b}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\dfrac{a+\sqrt{ab}-b}{a-b}\)
Vậy...
1.
\(\sqrt{50}-3\sqrt{8}+\sqrt{32}=5\sqrt{2}-6\sqrt{2}+4\sqrt{2}=3\sqrt{2}\)
2.
a, ĐK: \(x\in R\)
\(pt\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\)
\(\Leftrightarrow\left|x-2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
b, ĐK: \(x\ge3\)
\(pt\Leftrightarrow\sqrt{x-3}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(l\right)\end{matrix}\right.\)
a) (x-2)(x+2)-x(x-1)+8
= x2-4-x2+x+8
= (x2-x2)+(-4+8)+x
= 4+x
b) bn viết lại đề đi:v
đọc khó quá.
\(a,A=-3\sqrt{8}+\sqrt{50}+\sqrt{\left(1-\sqrt{2}\right)^2}\)
\(=-6\sqrt{2}+5\sqrt{2}+\left|1-\sqrt{2}\right|\)
\(=-\sqrt{2}-1+\sqrt{2}\)
\(=-1\)
Vậy \(A=-1\)
\(b,\)
\(=\left(\dfrac{5\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}\right)\)
\(=\left(\dfrac{5x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}\right)\)
\(=\left(\dfrac{\sqrt{x}\left(5\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}\right)\)
\(=\dfrac{5\sqrt{x}-1}{\sqrt{x}-1}.\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
\(=\dfrac{5\sqrt{x}-1}{\sqrt{x}}\)
Vậy \(B=\dfrac{5\sqrt{x}-1}{\sqrt{x}}\left(đk:x>0,x\ne1\right)\)
a: \(=\dfrac{x^2-5x+x+4}{x\left(x-2\right)}=\dfrac{x^2-4x+4}{x\left(x-2\right)}=\dfrac{x-2}{x}\)
b: \(=\dfrac{x^2-6x+9+4x^2+8x-4x^2-8x}{\left(x-3\right)\left(x+2\right)}\)
\(=\dfrac{x-3}{x+2}\)
a) \(=\dfrac{x\left(x-5\right)+x+4}{x\left(x-2\right)}=\dfrac{x^2-4x+4}{x\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}=\dfrac{x-2}{x}\)
b) \(=\dfrac{\left(x-3\right)^2+4x\left(x+2\right)-8x-4x^2}{\left(x+2\right)\left(x-3\right)}=\dfrac{x^2-6x+9+4x^2+8x-8x-4x^2}{\left(x+2\right)\left(x-3\right)}\)
\(=\dfrac{x^2-6x+9}{\left(x+2\right)\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{\left(x+2\right)\left(x-3\right)}=\dfrac{x-3}{x+2}\)
a. \(\left(2x+1\right)^2-4x\left(x-1\right)=4x^2+4x+1-4x^2+4x=8x+1\)
b. \(\left(x-2\right)\left(x+2\right)-\left(x-1\right)^2=x^2-4-x^2+2x-1=2x-5\)
bài 1:
a: Ta có: \(2\sqrt{18}-9\sqrt{50}+3\sqrt{8}\)
\(=6\sqrt{2}-45\sqrt{2}+6\sqrt{2}\)
\(=-33\sqrt{2}\)
b: Ta có: \(\left(\sqrt{7}-\sqrt{3}\right)^2+7\sqrt{84}\)
\(=10-2\sqrt{21}+14\sqrt{21}\)
\(=12\sqrt{21}+10\)
Bài 2:
a: Ta có: \(\sqrt{\left(2x+3\right)^2}=8\)
\(\Leftrightarrow\left|2x+3\right|=8\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=8\\2x+3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{11}{2}\end{matrix}\right.\)
b: Ta có: \(\sqrt{9x}-7\sqrt{x}=8-6\sqrt{x}\)
\(\Leftrightarrow4\sqrt{x}=8\)
hay x=4
c: Ta có: \(\sqrt{9x-9}+1=13\)
\(\Leftrightarrow3\sqrt{x-1}=12\)
\(\Leftrightarrow x-1=16\)
hay x=17
......................?
mik ko biết
mong bn thông cảm
nha ................
a: \(=\dfrac{x^2-2x+1}{x}:\dfrac{x-1-3x^2+3x-3}{\left(x-1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2}{x}\cdot\dfrac{\left(x-1\right)\left(x^2-x+1\right)}{-2x^2+4x-4}\)
\(=\dfrac{\left(x-1\right)^3\cdot\left(x^2-x+1\right)}{-2x\left(x^2-2x+2\right)}\)
b: \(=\left[\dfrac{x^2-2x+1}{x^2+x+1}+\dfrac{2x^2-4x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right]:\dfrac{2}{x^2+1}\)
\(=\dfrac{x^3-3x^2+3x+1+2x^2-4x+1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}\)
\(=\dfrac{x^3+3}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}\)
a: =>x>=0 và x^2+x=x^2
=>x=0
b: =>x>=2 và x^2-4x-3=x^2-4x+4
=>-3=4(loại)
\(a)ĐK:x\ge0\)
\(pt\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2+x=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x=0\left(tm\right)\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=0
\(b)ĐK:x\ge2+\sqrt{7}\)
\(pt\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x^2-4x-3=(x-2)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-4x-3=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\-3=4\end{matrix}\right.\)(vô lý)
Vậy pt vô nghiệm