Chứng tỏ rằng vs mọi STN n thì tích ( n + 4 ) . ( n + 7 ) là một số chẵn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n lẻ thì n+7 chẵn => (n+4).(n+7) chẵn
Nếu n chẵn thì n+4 chẵn => (n+4).(n+7) chẵn
Vậy (n+4).(n+7) chẵn với mọi số nguyên n
k mk nha
Nếu n lẻ thì n+7 chẵn suy ra (n+4).(n+7) chẵn
Nếu n chẵn thì n+4 chẵn suy ra (n+4)(n+7) chẵn
Đặt n là số lẻ suy ra n=2k+1
suy ra (n+4)(n+7) = (2k+1+4)(2k+1+7) = (2k+5)(2k+8) = 4k^2 +16k + 10k + 40 = 4k^2 + 26k + 40 = 2(2k^2+13k+20)
vậy suy ra trong trường hợp này (n+4)(n+7) chia hết cho 2
xét n là số chẵn nên n=2k
ta có
(n+4)(n+7) = (2k+4) +(2k+7) = 4k^2+ 14k + 8k + 28 = 4k^2 + 22k + 28 = 2(2k^2+11k+14)
vậy suy ra trong trường hop85 này (n+4)(n+7) chia hết cho 2
vậy (n+4)(n+7) luôn là số chẵn với mọi số tự nhiên n
Với n là số tự nhiên chẵn thì (n+4) là một số chẵn
Suy ra tích (n+4)(n+7) là một số chẵn.
Với n là số tự nhiên lẻ thì (n+7) là một số chẵn nên tích (n+4)(n+7) là một số chẵn.
Vậy (n+4)(n+7) luôn là một số chẵn với mọi số tự nhiên n.
Tham khảo câu hỏi tương tự nhé bạn
Tick tớ nhé Huỳnh Ngọc Mỹ
*Xét n lẻ=>n+7 chẵn
=>(n+4).(n+7) là số chẵn
*Xét n chẵn=>n+4 chẵn
=>(n+4).(n+7) là số chẵn
Vậy (n+4).(n+7) là số chẵn
n2+7n+4n+28
=n2+11n+28
=4(1/4n2+11/4n+7)
=4(1/2n+11/2)2-94
vậy .....
(n+4)(n+7)=n2+11n+28
=n2+n +10n +28
=n(n+1)+10n+28
vì n(n+1) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2=>n(n+1)+10n+28 là số chẵn
Với n lẻ
=> n + 7 chẵn
=> ( n + 4 )( n + 7 ) chẵn ( 1 )
Với n chẵn
=> n + 4 chẵn
=> ( n + 4 )( n + 7 ) chẵn ( 2 )
Từ ( 1 ) và ( 2 ) => ( n + 4 )( n + 7 ) chẵn với mọi n là số tự nhiên ( đpcm )
TH1: Nếu n là số tự nhiên lẻ
Đặt \(n=2a+1\)( \(a\inℕ\))
Ta có: \(\left(n+4\right)\left(n+7\right)=\left(2a+1+4\right)\left(2a+1+7\right)=\left(2a+5\right)\left(2a+8\right)\)
\(=2.\left(2a+5\right).\left(a+4\right)\)luôn là 1 số chẵn
TH2: Nếu n là số tự nhiên lẻ
Đặt \(n=2a\)( \(a\inℕ\))
Ta có: \(\left(n+4\right)\left(n+7\right)=\left(2a+4\right)\left(2a+7\right)=2.\left(a+2\right).\left(2a+7\right)\)luôn là 1 số chẵn
Vậy với mọi \(n\inℕ\)thì \(\left(n+4\right)\left(n+7\right)\)là 1 số chẵn
Lời giải:
Nếu $n$ lẻ thì $n+7$ chẵn
$\Rightarrow (n+4)(n+7)$ chẵn
Nếu $n$ chẵn thì $n+4$ chẵn
$\Rightarrow (n+4)(n+7)$ chẵn
Vậy $(n+4)(n+7)$ luôn là số chẵn với mọi $n$