K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
12 tháng 1
\({x^3} + 27 = {x^3} + {3^3} = \left( {x + 3} \right)\left( {{x^2} - 3x + 9} \right)\)
HQ
Hà Quang Minh
Giáo viên
12 tháng 1
\({x^3} + 8{y^3} - \left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right) = {x^3} + 8{y^3} - \left[ {{x^3} + {{\left( {2y} \right)}^3}} \right] = {x^3} + 8{y^3} - \left( {{x^3} + 8{y^3}} \right) = 0\)
HQ
Hà Quang Minh
Giáo viên
12 tháng 1

1. 

\({x^3} - 8 = {x^3} - {2^3} = \left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)\)
HQ
Hà Quang Minh
Giáo viên
12 tháng 1

2.

 \(\begin{array}{l}\left( {3x - 2y} \right)\left( {9{x^2} + 6xy + 4{y^2}} \right) + 8{y^3}\\ = \left( {3x - 2y} \right)\left[ {{{\left( {3x} \right)}^2} + 3x.2y + {{\left( {2y} \right)}^2}} \right] + 8{y^3}\\ = {\left( {3x} \right)^3} - {\left( {2y} \right)^3} + 8{y^3}\\ = 27{x^3} - 8{y^3} + 8{y^3}\\ = 27{x^3}\end{array}\)

28 tháng 6 2016

1)  2xy2+x2y4+1=(xy2)2+2xy2.1+12=(xy2+1)2

2)

a)2(x-y)(x+y)+(x+y)2+(x-y)2=(x+y+x-y)2=(2x)2=4x2

b)(x-y+z)2+(z-y)2+2(x-y+z)(y-z)

=(x-y+z)2+(y-z)2+2(x-y+z)(y-z)

=(x-y+z+y-z)2

=x2

21 tháng 7 2023

Check lại :v

HQ
Hà Quang Minh
Giáo viên
12 tháng 1

\(\begin{array}{l}\left( {x - 2y} \right)\left( {{x^2} + 2xy + 4{y^2}} \right) + \left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right)\\ = {x^3} - {\left( {2y} \right)^3} + {x^3} + {\left( {2y} \right)^3}\\ = {x^3} - 8{y^3} + {x^3} + 8{y^3}\\ = 2{x^3}\end{array}\)

5 tháng 9 2020

B1:

Vì \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y-\frac{1}{3}\right|\ge0\\\left|4z+5\right|\ge0\end{cases}\left(\forall x,y,z\right)}\Rightarrow\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\ge0\left(\forall x,y,z\right)\)

Mà theo đề bài, \(\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\le0\) nên dấu "=" xảy ra khi:

\(\left|x-\frac{1}{2}\right|=\left|2y-\frac{1}{3}\right|=\left|4z+5\right|=0\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{6}\\z=-\frac{5}{4}\end{cases}}\)

5 tháng 9 2020

B2:

a) Nếu \(x< 1\) => \(A=1-x+x+3=4\)

Nếu \(x\ge1\) => \(A=x-1+x+3=2x+2\)

b) Nếu \(x< -\frac{3}{2}\) => \(B=2x+2x+3=4x+3\)

Nếu \(x\ge-\frac{3}{2}\) => \(B=2x-2x-3=-3\)

6 tháng 10 2020

1.\(=x^3+8y^3-x^3+8y^3+2y^3=18y^3\)

2. \(=x^3-3x^2+3x-1+1-x^3+3\left(9-x^2\right)\)

\(=-3x^2+3x+27-3x^2=3\left(x+9\right)\)

Ko chắc lém :))))

f: \(x^2y^2+2xy+1=\left(xy+1\right)^2\)

g: \(\left(3x-2y\right)^2+2\left(3x-2y\right)+1=\left(3x-2y+1\right)^2\)

h: \(\left(x-3y\right)^2-8\left(x-3y\right)+16=\left(x-3y-4\right)^2\)

i: \(\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)^2=4x^2\)

HQ
Hà Quang Minh
Giáo viên
12 tháng 1

a)      \({x^3} + 512 = \left( {x + 8} \right)\left( {{x^2} - 8x + 64)} \right)\)

b)      \(27{x^3} - 8{y^3} = \left( {3x - 2y} \right)\left( {9{x^2} + 6xy + 4{y^2}} \right)\)

20 tháng 3 2019

b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)

\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)

\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)

\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)

\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)

20 tháng 3 2019

caau a) binh phuong len ra no x=y tuong tu