Một đa thức hai biến bậc hai thu gọn có thể có nhiều nhất
a) Bao nhiêu hạng tử bậc hai? Cho ví dụ.
b) Bao nhiêu hạng tử bậc nhất? Cho ví dụ.
c) Bao nhiêu hạng tử khác 0? Cho ví dụ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta gọi x là biến của đa thức đó
ta có đa thức là \(2x^5+128\)
xét \(2x^5+128=0\Leftrightarrow x^5=64\)
\(\Leftrightarrow x=\sqrt[5]{64}\) Vậy đa thức có nghiệm duy nhất
Mọi đa thức bậc ba đều có dạng ax3+bx2+cx+d tức là chỉ có 4 hạng tử nên nếu có 5 hạng tử thì phải có 2 hạng tử cùng bậc.
Thật vậy, nếu không có 2 hạng tử nào cùng bậc thì chứng tỏ đa thức đó có 5 hạng tử nên ít nhất là đa thức bậc 4,trái với đề bài.
vậy ....
Có nhiều đáp số, chẳng hạn:
P(x) = 4x5 - x4 + 2x3; Q(x) = x5 - x2 + x.
Gọi A là đa thức cần tìm
Đa thức bậc năm một biến có hai hạng tử mà hệ số cao nhất là 2 nên Đa thức chắc chắn sẽ có dạng là \(A=2x^5+B\)
Hệ số tự do là 64 mà đa thức A chỉ có hai hạng tử nên \(A=2x^5+64\)
Đặt A=0
=>\(2x^5+64=0\)
=>\(x^5+32=0\)
=>\(x^5=-32\)
=>x=-2
Đa thức hai biến x,y bậc hai thu gọn có dạng: \(a{x^2} + b{y^2} + cxy + dx + ey + f\) với a,b,c,d,e,f là các số thực.
a) Đa thức hai biến bậc hai có nhiều nhất 3 hạng tử bậc hai. Ví dụ, đa thức \(2{x^2} - {y^2} + 3xy - x + 2\).
b) Đa thức hai biến bậc hai có nhiều nhất 2 hạng tử bậc nhất. Ví dụ, đa thức \(2{x^2} - x + y + 2\).
c) Đa thức hai biến bậc hai có nhiều nhất 6 hạng tử khác 0. Ví dụ, đa thức \(2{x^2} - {y^2} + 3xy + 2x - y + 2\)