Cho biểu thức \(P = 5x\left( {3{x^2}y - 2x{y^2} + 1} \right) - 3xy\left( {5{x^2} - 3xy} \right) + {x^2}{y^2}\)
a) Bằng cách thu gọn, chứng tỏ rằng giá trị của biểu thức P chỉ phụ thuộc vào biến x mà không phụ thuộc vào biến y.
b) Tìm giá trị của x sao cho P=10.
a)
\(\begin{array}{l}P = 5x\left( {3{x^2}y - 2x{y^2} + 1} \right) - 3xy\left( {5{x^2} - 3xy} \right) + {x^2}{y^2}\\ = 5x.3{x^2}y - 5x.2x{y^2} + 5x.1 - 3xy.5{x^2} + 3xy.3xy + {x^2}{y^2}\\ = 15{x^3}y - 10{x^2}{y^2} + 5x - 15{x^3}y + 9{x^2}{y^2} + {x^2}{y^2}\\ = \left( {15{x^3}y - 15{x^3}y} \right) + \left( { - 10{x^2}{y^2} + 9{x^2}{y^2} + {x^2}{y^2}} \right) + 5x\\ = 5x\end{array}\)
b)
Để \(P = 10 \Leftrightarrow 5x = 10 \Leftrightarrow x = 10:5 \Leftrightarrow x = 2\).
Vậy với x = 2 thì P = 10.