K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

-3x^2+2x-1

=-3(x^2-2/3x+1/3)

=-3(x^2-2*x*1/3+1/9+2/9)

=-3(x-1/3)^2-2/3<=-2/3<0 với mọi x

4 tháng 3 2016

A = 0 nha bạn

4 tháng 3 2016

A= 0 nha bạn

Đồng vị

Trong cùng phía

Đồng vị

Trong cùng phía

30 tháng 9 2021

a) đồng vị

b) trong cùng phía

c) đồng vị

d) trong cùng phía

14 tháng 12 2017

\(A=\frac{3x^2+8x+6}{x^2+2x+1}\) \(\left(x\ne\pm1\right)\)

\(A=\frac{\left(3x^2+6x+3\right)+\left(2x+3\right)}{\left(x+1\right)^2}\)

\(A=\frac{3\left(x+1\right)^2+2x+3}{\left(x+1\right)^2}\)

\(A=3+\frac{2x+3}{\left(x+1\right)^2}\)

\(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow3+\frac{2x+3}{\left(x+1\right)^2}\ge3\Leftrightarrow A\ge3\)

Dấu "="xảy ra khi \(2x+3=0\Rightarrow x=\frac{-3}{2}\)

14 tháng 12 2017

Gọi k là một giá trị của A ta có: 

\(\frac{\left(3x^2-8x+6\right)}{\left(x^2+2x+1\right)}=k\)

\(\Leftrightarrow3x^2-8x+6=k\left(x^2-2x+1\right)\)

\(\Leftrightarrow\left(3-k\right)x^2-\left(8-2k\right)x+6-k=0\)(*)

Ta cần tìm k để PT (*) có nghiệm 
Xét: \(\Delta=\left(8-2k\right)^2-4\left(3-k\right)\left(6-k\right)=64-32k+4k^2-4\left(18-9k+k^2\right)=4k-8\)

Để PT (*) có nghiệm thì: \(\Delta\ge0\Leftrightarrow4k-8\ge0\Leftrightarrow k\ge2\)

Dấu "=" xảy ra khi: \(-\left(8-2.2\right)x+6-2=0\Leftrightarrow-4x+4=0\Rightarrow x=1\)

Vậy: \(B\ge2\)suy ra: B = 2 khi x = 1

30 tháng 9 2019

em ko biết,em mới lớp 5 thui mừ

30 tháng 9 2019

Ta có: \(3x^2+2x-5=3\left(x^2+\frac{2}{3}x-\frac{5}{3}\right)\)

\(=3\left(x^2+2.\frac{1}{3}x+\frac{1}{9}-\frac{16}{9}\right)\)

\(=3\left[\left(x+\frac{1}{3}\right)^2-\frac{16}{9}\right]\)

\(=3\left(x+\frac{1}{3}\right)^2-\frac{16}{3}\ge\frac{-16}{3}\left(????\right)\)

17 tháng 9 2021

\(x^2+4y^2-2x-4xy+4y+2018=\left[x^2-2x\left(1+2y\right)+\left(1+2y\right)^2\right]+2017=\left(x-1-2y\right)^2+2017\ge2017>0\)

6 tháng 3 2016

GTLN = 17/8  tại x = 3/4

Chuẩn không cần chỉnh (ai tích mình mình tích lại)

6 tháng 3 2016

-(2x2-3x-1)=\(-2\left(x^2-\frac{3}{2}x-1\right)\)

=\(-2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}-\frac{25}{16}\right)=-2\left(x-\frac{3}{4}\right)+\frac{25}{3}\)

vật gtln là 25/3 khi x=3/4

11 tháng 7 2019

a)Đặt A= \(x^2+2x+11=\left(x+1\right)^2+10\)

vì \(\left(x+1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x+1\right)^2+11\ge11;\forall x\)

Hay \(A\ge11>0;\forall x\)

phần b và c mình sẽ giải ra hằng đẳng thức lập luận tương tự phần a

b)\(4x^2+8x+5\)

 \(\left(2x\right)^2+2.2x.2+2^2+1\)

\(=\left(2x+2\right)^2+1\)

c) \(x^2+x+2=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)

11 tháng 7 2019

a) \(x^2+2x+11\)

\(=\left(x^2+2x+1\right)+10\)

\(=\left(x+1\right)^2+10\ge10\)

\(\text{Vì }\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+10\ge10\Rightarrow\left(x+1\right)^2+10>0\)

\(\Leftrightarrow x^2+2x+11>0\)

Vậy biểu thước x2+2x+11 luôn có giá trị dương

8 tháng 9 2019

(x-10) . (x+2 ) > 0

(-) - (+) < 0

=> Nêu lại đề bài < 0