Cho tam giác ABC, đường thẳng d // BC cắt AB, AC lần lượt tại M và N, gọi I là trung điểm BC. Chứng minh AI đi qua trung điểm MN?
Giúp em với ạ!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng qua A, song song với BC thì cắt AC tại A luôn rồi chứ cắt tại E làm sao được bạn?
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
Trên tia đối của MP lấy điểm D sao cho MP=MD.
Ta có: \(\Delta\)MBP=\(\Delta\)MCD (c.g.c) => BP=CD (2 cạnh tương ứng)
Mà BP=CQ => CD=CQ => \(\Delta\)DCQ cân tại C => ^CQD= (1800-^DCQ)/2
=> ^MPB=^MDC (2 góc tương ứng) ở vị trí so le trong => AB//CD => ^DCQ=^IAK (Đồng vị)
M là trung điểm PD, N là trung điểm PQ => MN là đường trung bình của \(\Delta\)PDQ
=> MN//DQ hay IK//DQ => ^CQD=^AKI (Đồng vị)
=> \(\Delta\)AIK có: ^AKI= (1800-^IAK)/2 = (1800-^DCQ)/2 = ^CQD
=> Tam giác AIK cân tại A (đpcm)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
này cái bạn nguyễn xuân toàn kia bị gì thế ? họ là hỏi bài mà !
a) Xét \(\Delta_vMDB\) và \(\Delta_vNEC\) có :
BD = CE(đầu đề ghi BD = BE là sai rồi nhá)
\(\widehat{B}=\widehat{C}\)(tam giác ABC cân tại A)
=> \(\Delta_vMDB=\Delta_vNEC\)(cgv - gn)
=> DM = EN(hai cạnh tương ứng)
b) Xét \(\Delta_vMDI\) và \(\Delta_vNEI\)có :
DM = EN(theo câu a)
\(\widehat{MDI}=\widehat{NEI}\)(đối đỉnh)
=> \(\Delta_vMDI=\Delta_vNEI\left(cgv-gn\right)\)
=> IM = IN(hai cạnh tương ứng)
=> BC cắt MN tại I
=> I là tđ của MN
c) Gọi H là chân đường vuông góc kẻ từ A xuống BC
Xét \(\Delta_vAHB\) và \(\Delta_vAHC\)có :
AB = AC(tam giác ABC cân tại A)
AH chung
=> \(\Delta_vAHB=\Delta_vAHC\left(ch-cgv\right)\)
=> \(\widehat{HAB}=\widehat{HAC}\)
Gọi O là giao điểm của AH với đường thẳng vuông góc với MN kẻ từ I
Xét tam giác OAB và tam giác OAC có :
OA chung
AB = AC(tam giác ABC cân tại A)
góc B = góc C(tam giác ABC cân tại A)
=> tam giác OAB = tam giác OAC(c.g.c)
=> góc OBC = góc OCA (1)
Xét tam giác vuông OIM và tam giác vuông OIN có :
OI chung
IM = IN(theo câu b)
=> tam giác vuông OIM = tam giác vuông OIN(hai cạnh góc vuông)
=> OM = ON(hai cạnh tương ứng)
Xét tam giác OBM và tam giác OCN có :
OM = ON(cmt)
OB = OC(tam giác OAB = tam giác OAC)
BM = CN(tam giác MDB = tam giác NEC)
=> tam giác OBM = tam giác OCN(c.c.c)
=> góc OBM = góc OCM (2)
Từ (1) và (2) => góc OCA = góc OCN = 90 độ , do đó \(OC\perp AC\)
Vậy điểm O cố định
Câu a, DM = EN chứ k phải DM = ED
Gọi K là giao của AI với MN
Áp dụng talet trong tam giác
\(\dfrac{MK}{BI}=\dfrac{NK}{CI}\Rightarrow\dfrac{MK}{NK}=\dfrac{BI}{CI}=1\)
=> MK = NK