Cho \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và x3 + y3 + z3 = 297
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=0\)
\(\Leftrightarrow x^2+y^2+z^2-xy-xz-yz=0\)
\(\Leftrightarrow x=y=z\)
Áp dụng BĐT Cauchy cho hai số dương :
\(\frac{x^3}{y^2}+x\ge2\sqrt{\frac{x^3}{y^2}\cdot x}=2\frac{x^2}{y}\)
\(\frac{y^3}{z^2}+y\ge2\frac{y^2}{z}\)
\(\frac{z^3}{x^2}+z\ge2\frac{z^2}{x}\)
\(\Rightarrow\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\ge2\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\right)-\left(x+y+z\right)\)
Mà \(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\ge\frac{\left(x+y+z\right)^2}{x+y+z}=x+y+z\)
\(\Rightarrow\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{y^2}\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\)
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
a: (x+y+z)^3-x^3-y^3-z^3
=(x+y+z-x)(x^2+2xy+y^2-x^2-xy-xz+z^2)-(y+z)(y^2-yz+z^2)
=(x+y)(y+z)(x+z)
b: x^3+y^3+z^3=1
x+y+z=1
=>x+y=1-z
x^3+y^3+z^3=1
=>(x+y)^3+z^3-3xy(x+y)=1
=>(1-z)^3+z^3-3xy(1-z)=1
=>1-3z-3z^2-z^3+z^3-3xy(1-z)=1
=>1-3z+3z^2-3xy(1-z)=1
=>-3z+3z^2-3xy(1-z)=0
=>-3z(1-z)-3xy(1-z)=0
=>(z-1)(z+xy)=0
=>z=1 và xy=0
=>z=1 và x=0; y=0
A=1+0+0=1
a: Ta có: \(\left(x+y\right)^2\)
\(=x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\Rightarrow\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}\)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}=\frac{x^3+y^3+z^3}{8+27+64}=\frac{297}{99}=3\)
\(\Rightarrow\hept{\begin{cases}x^3=24\\y^3=81\\z^3=192\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\sqrt[3]{24}\\y=\sqrt[3]{81}\\z=\sqrt[3]{192}\end{cases}}\)
a, x^4 - 5x^2 + 4
= x^4 - 4x^2- x+ 4
= x^2 . (x^2 - 4) - (x^2 - 4)
= (x^2 - 4) . (x^2 - 1)
= (x - 2) . (x + 2) . (x - 1) . (x + 1)