K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2017

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

\(\Rightarrow\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}\)

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}=\frac{x^3+y^3+z^3}{8+27+64}=\frac{297}{99}=3\)

\(\Rightarrow\hept{\begin{cases}x^3=24\\y^3=81\\z^3=192\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\sqrt[3]{24}\\y=\sqrt[3]{81}\\z=\sqrt[3]{192}\end{cases}}\)

10 tháng 6 2018

a, x^4 - 5x^2 + 4

= x^4 - 4x^2- x+ 4

= x^2  . (x^2 - 4) - (x^2 - 4)

= (x^2 - 4) . (x^2 - 1)

= (x - 2) . (x + 2) . (x - 1) . (x + 1)

30 tháng 5 2017

ko pic nũa mik mới lúp 4 mí 

k mik ik bn tốt

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Đề bài yêu cầu gì vậy em.

27 tháng 10 2021

\(x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=0\)

\(\Leftrightarrow x^2+y^2+z^2-xy-xz-yz=0\)

\(\Leftrightarrow x=y=z\)

18 tháng 5 2018

Áp dụng BĐT Cauchy cho hai số dương :

\(\frac{x^3}{y^2}+x\ge2\sqrt{\frac{x^3}{y^2}\cdot x}=2\frac{x^2}{y}\)

\(\frac{y^3}{z^2}+y\ge2\frac{y^2}{z}\)

\(\frac{z^3}{x^2}+z\ge2\frac{z^2}{x}\)

\(\Rightarrow\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\ge2\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\right)-\left(x+y+z\right)\)

Mà \(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\ge\frac{\left(x+y+z\right)^2}{x+y+z}=x+y+z\)

\(\Rightarrow\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{y^2}\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\)

9 tháng 7 2023

Bài 3:

a, (\(x\)+y+z)2

=((\(x\)+y) +z)2

= (\(x\) + y)2 + 2(\(x\) + y)z + z2

\(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2

=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz

 

9 tháng 7 2023

b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))

\(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3 

Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé

a: (x+y+z)^3-x^3-y^3-z^3

=(x+y+z-x)(x^2+2xy+y^2-x^2-xy-xz+z^2)-(y+z)(y^2-yz+z^2)

=(x+y)(y+z)(x+z)

b: x^3+y^3+z^3=1

x+y+z=1

=>x+y=1-z

x^3+y^3+z^3=1

=>(x+y)^3+z^3-3xy(x+y)=1

=>(1-z)^3+z^3-3xy(1-z)=1

=>1-3z-3z^2-z^3+z^3-3xy(1-z)=1

=>1-3z+3z^2-3xy(1-z)=1

=>-3z+3z^2-3xy(1-z)=0

=>-3z(1-z)-3xy(1-z)=0

=>(z-1)(z+xy)=0

=>z=1 và xy=0

=>z=1 và x=0; y=0

A=1+0+0=1

4 tháng 9 2021

Biến đổi tương đương nhé bạn.

a: Ta có: \(\left(x+y\right)^2\)

\(=x^2+2xy+y^2\)

\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)