Cho góc xOy. Trên tia Ox, lấy hai điểm A và B sao cho OA = 2 cm, OB = 5 cm. Trên tia Oy, lấy điểm C sao cho OC = 3 cm. Từ điểm B kẻ đường thẳng song song với AC cắt Oy tại D. Tính độ dài đoạn thẳng CD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AC//CD =>\(\dfrac{OA}{AB}=\dfrac{OC}{CD}\Leftrightarrow\dfrac{2}{3}=\dfrac{3}{CD}\Leftrightarrow CD=\dfrac{3.3}{2}=4,5cm\)
a) Chỉ ra điểm O nằm giữa hai điểm B và A. Từ đó tính được AB = 5 cm.
b) Chỉ ra điểm B nằm giữa hai điểm A và C. Từ đó tính được AC = 10 cm.
a) Do A; B cùng thuộc tia Ox; OA < OB ( 2cm < 5cm) nên A nằm giữa O và B.
Khi đó : OB = OA + AB
AB = OB - OA = 5 - 2 = 3 (cm)
C nằm trên tia đối của tia OA nên O nằm giữa A và C
AC = CO + OA = 1 + 2 = 3 (cm)
AB = 3 cm ; AC = 3 cm
bạn tự vẽ hình nha
a)xét tam giác AOC và tam giác BOC
có +OB=OA(gt)
+\(O_1=O_2\) (Ot là tia phân giác của góc xOy)
+OC: cạnh chung
vậy tam giác AOC= tam giác BOC
b) vì tam giác AOC=tam giácBOC(CMT)
=>AC=CB(2 góc tương ứng)
do đó CO là tiaa phân giác của góc ACB
a) Do A; B cùng thuộc tia Ox; OA < OB ( 2cm < 5cm) nên A nằm giữa O và B.
Khi đó : OB = OA + AB
AB = OB - OA = 5 - 2 = 3 (cm)
C nằm trên tia đối của tia OA nên O nằm giữa A và C
AC = CO + OA = 1 + 2 = 3 (cm)
AB = 3 cm ; AC = 3 cm
b) Ta có: A nằm giữa B và C
AB = AC = 3 cm
⇒ Điểm A là trung điểm của đoạn thẳng BC.
a) Chỉ ra điểm O nằm giữa hai điểm A và B. Từ đó tính được AB = 7 cm.
b) Chỉ ra điểm C nằm giữa hai điểm O và B. Từ đó tính được BC = 2 cm. Tương tự, tính được AC = 9 cm.
Từ điểm B kẻ đường thẳng song song với AC cắt Oy tại D hay AC // BD.
Áp dụng định lí Thalès vào tam giác OBD, ta có:
\(\dfrac{{OA}}{{OB}} = \dfrac{{OC}}{{O{\rm{D}}}}\) hay \(\dfrac{2}{5} = \dfrac{3}{{O{\rm{D}}}}\)
Suy ra: \(O{\rm{D}} = \dfrac{{5.3}}{2} = 7,5(cm)\)
Ta có OD = OC + CD suy ra CD = OD – OC = 7,5 – 3 = 4,5 (cm).
Vậy CD = 4,5 cm.