Cho ΔABC vuông tại A (AB < AC), đường cao AH. Trên cạnh AC lấy điểm D sao cho AD = AB. Gọi O là trung điểm của BD. . Vẽ (O) đường kính BD cắt cạnh BC tại điểm thứ hai K.
a, C/m: A thuộc đường tròn (O)
b, C/m: \(\widehat{AKB}=\widehat{ADB}\)
c, C/m: CK.CB = CD.CA
d, Tính \(\widehat{AHO}\)
a) Ta có: ΔABD vuông tại A(gt)
nên A nằm trên đường tròn đường kính BD(Định lí quỹ tích cung chứa góc)
mà BD là đường kính của (O)
nên A\(\in\)(O)(Đpcm)
b) Xét (O) có
\(\widehat{AKB}\) là góc nội tiếp chắn cung AB
\(\widehat{ADB}\) là góc nội tiếp chắn cung AB
Do đó: \(\widehat{AKB}=\widehat{ADB}\)(Hệ quả góc nội tiếp)