K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2015

C=(x+1)^3+(x-1)^3 -3x(x+1)(x-1)

=(x3+3x2+3x+1)+(x3-3x2+3x-1)-3x(x2-1)

=x3+3x2+3x+1+x3-3x2+3x-1-3x3+3x

=-x3+9x

6 tháng 7 2015

cái này giống hằng đẳng thức quá

20 tháng 11 2021

\(a,=x^2-4-x^2+2x+3=2x-1\\ b,=x^3+3x^2-5x-15+x^2-x^3+4x-4x^2=-x-15\\ c,=2x^2+3x-10x-15-2x^2+6x+x+7=-8\\ d,=\left(2x+1+3x-1\right)^2=25x^2\)

20 tháng 11 2021

Bạn ơi, làm thế nào mà bạn tính ra được như vậy ạ? Mình thấy nó hơi khó hiểu, bạn có thể ghi rõ ra được không ạ?
Cảm ơn bạn

 

10 tháng 11 2021

\(A=2x^3+3x^2-3-5x^2-5x=2x^3-2x^2-5x-3\\ B=125-150x+60x^2-8x^3-25+9x^2=-8x^3+69x^2-150x+100\\ C=\left(3x+1-2x+1\right)\left(3x+1+2x-1\right)=5x\left(x+2\right)=5x^2+10x\\ D=\left(2x+1-3+x\right)^2=\left(3x-2\right)^2=9x^2-12x+4\\ E=x^3-6x^2+12x-8-x^3+x+6x^2-18x=-5x-8\\ F=x^3-3x^2+3x-1-3+3x^2-x^3+1-3x=-3\)

1 tháng 10 2021

\(a,=x^2-6x+9-x^2+6x=9\\ b,=4x^2+4x+1-4x^2+9-4x-8=2\\ c,=\left(2x^2-2x-x+1\right):\left(x-1\right)\\ =\left(x-1\right)\left(2x-1\right):\left(x-1\right)=2x-1\)

1 tháng 10 2021

`a)(x-3)^2-x(x-6)`

`=x^2-6x+9-x^2+6x=9`

`b)(2x+1)^2-(3+2x)(2x-3)-4(x+2)`

`=4x^2+4x+1-(4x^2-9)-4x-8`

`=2`

`c)(2x^2-3x+1):(x-1)`

`=(2x^2-2x-x+1):(x-1)`

`=[2x(x-1)-(x-1)]:(x-1)`

`=2x-1`

27 tháng 12 2020

a) Ta có: \(\dfrac{2x^2-2x}{x-1}\)

\(=\dfrac{2x\left(x-1\right)}{x-1}\)

=2x

b) Ta có: \(\dfrac{x^2+2x+1}{3x^2+3x}\)

\(=\dfrac{\left(x+1\right)^2}{3x\left(x+1\right)}\)

\(=\dfrac{x+1}{3x}\)

c) Ta có: \(\dfrac{x}{3x-3}+\dfrac{1}{x^2-1}\)

\(=\dfrac{x}{3\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x+1+3}{3\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x+4}{3x^2-3}\)

27 tháng 12 2020

a, \(\dfrac{2x^2-2x}{x-1}=\dfrac{2x\left(x-1\right)}{x-1}=2x\) ( đk : \(x\ne1\) )

b,\(\dfrac{x^2+2x+1}{3x^2+3x}=\dfrac{\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{x+1}{3x}\) ( đk : \(x\ne-1\) )

c

 

=

21 tháng 10 2021

a: Ta có: \(3x\left(2x+1\right)+\left(2x-3\right)\left(x+1\right)\)

\(=6x^2+3x+2x^2+2x-3x-3\)

\(=8x^2+2x-3\)

15 tháng 10 2023

2:

a: \(9x^2-1=\left(3x\right)^2-1=\left(3x-1\right)\left(3x+1\right)\)

b: \(2\left(x-1\right)+x^2-x\)

\(=2\left(x-1\right)+x\left(x-1\right)\)

\(=\left(x-1\right)\left(x+2\right)\)

c: \(3x^2+14x-5\)

\(=3x^2+15x-x-5\)

\(=3x\left(x+5\right)-\left(x+5\right)=\left(x+5\right)\left(3x-1\right)\)

3: 

a: \(2x\left(x-1\right)-2x^2=4\)

=>\(2x^2-2x-2x^2=4\)

=>-2x=4

=>x=-2

b: \(x\left(x-3\right)-\left(x+2\right)\left(x-1\right)=5\)

=>\(x^2-3x-\left(x^2+x-2\right)=5\)

=>\(x^2-3x-x^2-x+2=5\)

=>-4x=3

=>x=-3/4

c: \(4x^2-25+\left(2x+5\right)^2=0\)

=>\(\left(2x-5\right)\left(2x+5\right)+\left(2x+5\right)^2=0\)

=>\(\left(2x+5\right)\left(2x-5+2x+5\right)=0\)

=>4x(2x+5)=0

=>\(\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)

a: Ta có: \(\left(x-2\right)^2-\left(2x-1\right)^2+\left(3x-1\right)\left(x-5\right)\)

\(=x^2-4x+4-4x^2+4x-1+3x^2-15x-x+5\)

\(=-16x+8\)

b: Ta có: \(\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)

\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)

=27x-55

22 tháng 10 2023

1:

a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)

\(=4x^2-20x+25-4x^2-12x\)

=-32x+25

b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)

\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)

c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)

\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)

\(=\left(-3\right)^2+5\left(2x-3\right)\)

\(=9+10x-15=10x-6\)

2: 

a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)

\(=9x^2-12x+4-5x^2+20x+4x-4\)

\(=4x^2+12x\)

b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)

\(=27-x^3+x^3-9x^2+27x-27\)

\(=-9x^2+27x\)

c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)

\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)

\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)

\(=-5\left(x^2-16\right)=-5x^2+80\)