Giải hệ phương trình :
\(2\sqrt{x}+\dfrac{1}{y-3}=5\)
\(3\sqrt{x}=5+\dfrac{1}{y-3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: \(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
\(=\dfrac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}-2}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}-2}{\sqrt{2}}=\sqrt{2}\)
Ta có: \(\left\{{}\begin{matrix}\dfrac{3}{\sqrt{x+y}}-\dfrac{2}{\sqrt{x-y}}=4\\\dfrac{2}{\sqrt{x+y}}-\dfrac{1}{\sqrt{x-y}}=5\end{matrix}\right.\)
Đặt: \(t=\sqrt{x+y}\) và \(k=\sqrt{x-y}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{t}-\dfrac{2}{k}=4\\\dfrac{2}{t}+\dfrac{1}{k}=5\end{matrix}\right.\)
Ta lại đặt: \(a=\dfrac{1}{t}\) và \(u=\dfrac{1}{k}\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a-2u=4\\2a+u=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a-2u=4\\4a+2u=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a-2u=4\\7a=14\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6-2u=4\\a=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u=1\\a=2\end{matrix}\right.\)
Mà:
\(u=1\Rightarrow\dfrac{1}{k}=1\Rightarrow k=1\)
\(a=2\Rightarrow\dfrac{1}{t}=2\Rightarrow t=\dfrac{1}{2}\)
Ta lại có:
\(k=1\Rightarrow\sqrt{x+y}=1\)
\(t=\dfrac{1}{2}\Rightarrow\sqrt{x-y}=\dfrac{1}{2}\)
Ta có hệ:
\(\left\{{}\begin{matrix}\sqrt{x-y}=1\\\sqrt{x+y}=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\x+y=\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\2x=\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{8}-y=1\\x=\dfrac{5}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{3}{8}\\x=\dfrac{5}{8}\end{matrix}\right.\)
Vậy \(x-\dfrac{5}{8};y=-\dfrac{3}{8}\)
Đặt 1/căn x+y=a; 1/căn x-y=b
Theo đề, ta có hệ:
3a-2b=4 và 2a+b=5
=>a=2 và b=1
=>x+y=1/4 và x-y=1
=>x=5/8 và y=-3/8
\(ĐK:x\ge3;y\ne-1\)
Đặt \(\sqrt{x-3}=a;a\ge0\)
\(\dfrac{1}{y+1}=b\)
Khi đó, hpt trở thành:
\(\left\{{}\begin{matrix}3a-b=1\\a+2b=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6a-2b=2\\a+2b=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7a=7\\a+2b=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\1+2b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-3}=1\\\dfrac{1}{y+1}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-3=1\\y+1=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-\dfrac{1}{2}\end{matrix}\right.\) ( tm )
a) Ta có: \(\left\{{}\begin{matrix}\dfrac{5}{x-1}+\dfrac{1}{y-1}=10\\\dfrac{1}{x-1}-\dfrac{3}{y-1}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x-1}+\dfrac{1}{y-1}=10\\\dfrac{5}{x-1}-\dfrac{15}{y-1}=90\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{16}{y-1}=-80\\\dfrac{1}{x-1}-\dfrac{3}{y-1}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-1=\dfrac{-1}{5}\\\dfrac{1}{x-1}=18+\dfrac{3}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{5}\\x-1=\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{4}{5}\end{matrix}\right.\)
a.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\y\ge3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\5\sqrt{x-2}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\\sqrt{x-2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{y-3}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)
b.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\ne-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{4x}{x+1}-\dfrac{10}{y+4}=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{19x}{x+1}=28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+1}=\dfrac{28}{19}\\\dfrac{1}{y+4}=-\dfrac{4}{19}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}19x=28x+28\\4y+16=-19\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{28}{9}\\y=-\dfrac{35}{4}\end{matrix}\right.\)
\(2x^2+3x-5=0\)
\(< =>2x^2-2x+5x-5=0\)
\(< =>2x\left(x-1\right)+5\left(x-1\right)=0\)
\(< =>\left(x-1\right)\left(2x+5\right)=0\)
\(< =>\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
\(\hept{\begin{cases}x+2y=1\\-3x+4y=-18\end{cases}}\)
\(< =>\hept{\begin{cases}-3x-6y=-3\\-3x-6y+10y=-18\end{cases}}\)
\(< =>\hept{\begin{cases}x+2y=1\\10y=-18+3=-15\end{cases}}\)
\(< =>\hept{\begin{cases}x+2y=1\\y=-\frac{3}{2}\end{cases}< =>\hept{\begin{cases}x-3=1\\y=-\frac{3}{2}\end{cases}< =>\hept{\begin{cases}x=4\\y=-\frac{3}{2}\end{cases}}}}\)
a: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{24}{x-3}-\dfrac{10}{y+2}=126\\\dfrac{24}{x-3}+\dfrac{45}{y+2}=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-55}{y+2}=165\\\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+2=\dfrac{-1}{3}\\\dfrac{12}{x-3}=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{7}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2\sqrt{x}+\dfrac{1}{y-3}=5\\3\sqrt{x}=5+\dfrac{1}{y-3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x}+\dfrac{1}{y-3}=5\\3\sqrt{x}-\dfrac{1}{y-3}=5\end{matrix}\right.\)
ĐK: \(x\ge0;y\ge3\).
Đặt \(\sqrt{x}=a;\dfrac{1}{y-3}=b\)
\(\Rightarrow\left\{{}\begin{matrix}2a+b=5\\3a-b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
Trả ẩn: \(\left\{{}\begin{matrix}\sqrt{x}=2\\\dfrac{1}{y-3}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
Vậy hệ pt có nghiệm: \(\left(x;y\right)=\left(4;4\right)\).