K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2023

\(x^2⋮6\Rightarrow x^2\in\left\{1;2;3;6\right\}\)

\(\Rightarrow x\in\left\{1;\sqrt[]{2};\sqrt[]{3};\sqrt[]{6}\right\}\)

\(\Rightarrow x\in\left\{1\right\}\left(x\in N\right)\)

\(\Rightarrow\forall x\inℕ,x^2⋮6\Rightarrow x⋮6\) là mệnh đề sai

 

HQ
Hà Quang Minh
Giáo viên
20 tháng 7 2023

Bạn xem lại nhé, đề viết với mọi x ∈ N mà bạn, bạn mới xét vài trường hợp chứ không bao quát

17 tháng 5 2017

a) \(\left(P\Rightarrow Q\right):\)"Nếu \(x^2=1\) thì \(x=1\)". Mệnh để đảo là "Nếu \(x=1\) thì \(x^2=1\)"

b) Mệnh đề đảo "Nếu \(x=1\) thì \(x^2=1\) là đúng

c) Với \(x=-1\) thì mệnh đề \(\left(P\Rightarrow Q\right):\)sai

17 tháng 5 2017

a) \(\left(P\Rightarrow Q\right):\)"Nếu \(x\) là một số hữu tỉ \(x^2\) cũng là một số hữu tỉ". Mệnh đề đúng.

b) Mệnh đề đảo là " Nếu \(x^2\) là một số hữu tỉ thì \(x\) là một số hữu tỉ"

c) Chẳng hạn, với \(x=\sqrt{2}\) mệnh đề này sai

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Mệnh đề \(P \Rightarrow Q\): “Nếu tứ giác ABCD là hình bình hành thì nó có hai đường chéo cắt nhau tại trung điểm của mỗi đường”.

Mệnh đề này đúng vì “hai đường chéo cắt nhau tại trung điểm của mỗi đường” là tính chất của hình hình hành.

b) Mệnh đề đảo của mệnh đề \(P \Rightarrow Q\) là mệnh đề \(Q \Rightarrow P\), được phát biểu là: “Nếu tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm của mỗi đường thì nó là hình bình hành”.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

P: “tam giác ABC vuông tại A”

Q: “tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)”

+) Mệnh đề \(Q \Rightarrow P\) là “Nếu tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)thì tam giác ABC vuông tại A”

+) Từ định lí Pytago, ta có:

Tam giác ABC vuông tại A thì \(A{B^2} + A{C^2} = B{C^2}\)

Và: Tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\) thì vuông tại A.

Do vậy, hai mệnh đề “\(P \Rightarrow Q\)” và “\(Q \Rightarrow P\)” đều đúng.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

+) Mệnh đề R: “Nếu ABC là tam giác đều thì nó có hai góc bằng \({60^o}\)” có dạng \(P \Rightarrow Q\), với

P: “ABC là tam giác đều” và Q: “Tam giác ABC có hai góc bằng \({60^o}\)”

Ta thấy khi P đúng thì Q cũng đúng. Do đó \(P \Rightarrow Q\) đúng hay R đúng.

+) Mệnh đề T: “Nếu \(a = 2\) thì \({a^2} - 4 = 0\)” có dạng \(P \Rightarrow Q\), với:

P: “\(a = 2\)” và Q: “\({a^2} - 4 = 0\)”.

Ta thấy khi P đúng thì Q cũng đúng. Do đó \(P \Rightarrow Q\) đúng hay T đúng.

b) Mệnh đề \(Q \Rightarrow P\) của hai mệnh đề trên là:

“Nếu ABC có hai góc bằng \({60^o}\) thì nó là tam giác đều”, đúng.

“Nếu \({a^2} - 4 = 0\) thì \(a = 2\)” sai (vì thiếu nghiệm \(a =  - 2\)).

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Mệnh đề \(P \Rightarrow Q\) là: “Nếu \({a^2} < {b^2}\) thì  \(0 < a < b\)”

b) Mệnh đề \(Q \Rightarrow P\) là: “Nếu \(0 < a < b\) thì \({a^2} < {b^2}\)”

c) Mệnh đề \(P \Rightarrow Q\) là: “Nếu \({a^2} < {b^2}\) thì  \(0 < a < b\)” sai,

Chẳng hạn \(a =  2;\;b = -3\) ta có: \({2^2} < {( - 3)^2}\) nhưng không suy ra \(0<2<-3\).

 Mệnh đề \(Q \Rightarrow P\) là: “Nếu \(0 < a < b\) thì \({a^2} < {b^2}\)” đúng.

19 tháng 1 2019

B: “∃ x ∈ Q : x2 = 2”.

B : “∀ x ∈ Q : x2 ≠ 2”

B đúng.

Lưu ý: √2 là số vô tỷ.

17 tháng 5 2017

a) \(\left(P\Rightarrow Q\right)\) : " Nếu AB = AC thì tam giác ABC cân"

Mệnh đề đảo \(\left(Q\Rightarrow P\right):\)" Nếu tam giác ABC cân thì AB = AC"

b) \(\left(P\Rightarrow Q\right)\) : đúng, \(\left(Q\Rightarrow P\right):\)sai

1 tháng 9 2019

C: “∀ x ∈ R : x < x + 1”.

C : “∃ x ∈ R: x ≥ x + 1”.

C sai vì x + 1 luôn lớn hơn x.