K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

ai gải giúp mìn với ạ

26 tháng 3 2018

ko biết làm thông cảm :>

30 tháng 5 2021

\(x^2-2x-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}u=x_1+\left(x_2\right)^2\\v=x_2+\left(x_1\right)^2\end{matrix}\right.\)

\(\Rightarrow\)\(\left\{{}\begin{matrix}u+v=\left(x_1+x_2\right)+\left(x_2+x_1\right)^2-2x_1x_2\\uv=2x_1x_2+x_1^3+x_2^3=2x_1x_2+\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u+v=8\\uv=12\end{matrix}\right.\)

=>u và v là nghiệm của pt \(t^2-8t+12=0\)

24 tháng 12 2017

Giả sử  x 1 x 2  la hai nghiệm của phương trình  x 2 + px + q = 0

Theo hệ thức Vi-ét ta có:  x 1 +  x 2  = - p/1 = - p;  x 1 x 2  = q/1 = q

Phương trình có hai nghiệm là  x 1  +  x 2  và  x 1 x 2  tức là phương trình có hai nghiệm là –p và q.

Hai số -p và q là nghiệm của phương trình.

(x + p)(x - q) = 0 ⇔  x 2  - qx + px - pq = 0 ⇔  x 2  + (p - q)x - pq = 0

Phương trình cần tìm:  x 2  + (p - q)x - pq = 0

NV
19 tháng 12 2020

\(\Delta'=m^2-\left(m^2-1\right)=1>0\) nên pt luôn có 2 nghiệm pb

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-1\end{matrix}\right.\)

Do \(x_1\) là nghiệm của pt nên:

\(x_1^2-2mx_1+m^2-1=0\)

\(\Leftrightarrow x_1^2-2mx_1+m^2=1\)

\(\Rightarrow x_1^3-2mx_1^2+m^2x_1=x_1\)

\(\Rightarrow x_1^3-2mx_1^2+m^2x_1-2=x_1-2\)

Hoàn toàn tương tự, ta có: \(x_2^3-2mx_2^2+m^2x_2-2=x_2-2\)

Giả sử pt \(y^2+by+c=0\)  nhận \(x_1-2\) và \(x_2-2\) là nghiệm

\(\Rightarrow\left\{{}\begin{matrix}x_1-2+x_2-2=-b\\\left(x_1-2\right)\left(x_2-2\right)=c\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2-4=-b\\x_1x_2-2\left(x_1+x_2\right)+4=c\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m-4=-b\\m^2-1-4m+4=c\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=-\left(2m-4\right)\\c=m^2-4m+3\end{matrix}\right.\)

Vậy pt đó có dạng: \(x^2-\left(2m-4\right)x+m^2-4m+3=0\)

24 tháng 3 2017

Đáp án: D

Theo định lý Vi-ét ta có

Khi đó,   là nghiệm của phương trình

7 tháng 5 2018

 Hai số 1 -  2  và 1 +  2  là nghiệm của phương trình :

[x – (1 -  2  )][x – (1 +  2  )] = 0

⇔ x 2  – (1 +  2  )x – (1 -  2  )x + (1 -  2  )(1 +  2  ) = 0

⇔  x 2  – 2x – 1 = 0

9 tháng 4 2019

Hai số -1/2 và 3 là nghiệm của phương trình :

(x + 1/2 )(x – 3) = 0 ⇔ 2 x 2  – 5x – 3 = 0

NV
9 tháng 9 2021

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{5}{3}\\x_1x_2=-2\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}y_1+y_2=2x_1-x_2+2x_2-x_1\\y_1y_2=\left(2x_1-x_2\right)\left(2x_2-x_1\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2\\y_1y_2=-2x_1^2-2x_2^2+5x_1x_2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-\dfrac{5}{3}\\y_1y_2=-2\left(x_1+x_2\right)^2+9x_1x_2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-\dfrac{5}{3}\\y_1y_2=-2.\left(-\dfrac{5}{3}\right)^2+9.\left(-2\right)=-\dfrac{212}{9}\end{matrix}\right.\)

\(\Rightarrow y_1;y_2\) là nghiệm của:

\(y^2+\dfrac{5}{3}y-\dfrac{212}{9}=0\Leftrightarrow9y^2+10y-212=0\)

4 tháng 7 2019

Hai số 2 và 5 là nghiệm của phương trình :

(x – 2)(x – 5) = 0 ⇔  x 2  – 7x + 10 = 0

11 tháng 7 2018

Hai số 0,1 và 0,2 là nghiệm của phương trình :

(x – 0,1)(x – 0,2) = 0 ⇔  x 2  – 0,3x + 0,02 = 0