K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
10 tháng 1 2024

a) \(3{{\rm{x}}^2}.8{{\rm{x}}^4} = \left( {3.8} \right).\left( {{x^2}.{x^4}} \right) = 24{{\rm{x}}^6}\)

b) Quy tắc nhân hai đơn thức cùng một biến: ta nhân các hệ số với nhau và nhân các phần biến với nhau.

HQ
Hà Quang Minh
Giáo viên
10 tháng 1 2024

a) \(5{{\rm{x}}^3} + 8{{\rm{x}}^3} = (5 + 8){x^3} = 13{{\rm{x}}^3}\)

b) \(10y^7 - 15y^7 = (10 - 15)y^7 = -5y^7\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 1 2024

a) Đơn thức: \(2{{\rm{x}}^3}{y^4}\) có hệ số là 2

Đơn thức: \( - 3{{\rm{x}}^3}{y^4}\) có hệ số là -3

b) Hai đơn thức \(2{{\rm{x}}^3}{y^4}\) và \( - 3{{\rm{x}}^3}{y^4}\) có cùng phần biến là: \({{\rm{x}}^3}{y^4}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

a) Ta có:

\(\frac{{9{{\rm{x}}^2} + 3{\rm{x}} + 1}}{{27{{\rm{x}}^3} - 1}} = \frac{{9{{\rm{x}}^2} + 3{\rm{x}} + 1}}{{\left( {3{\rm{x}} - 1} \right)\left( {9{{\rm{x}}^2} + 3{\rm{x}} + 1} \right)}} = \frac{1}{{3{\rm{x}} - 1}}\)

\(\frac{{{x^2} - 4{\rm{x}}}}{{16 - {x^2}}} = \frac{{x\left( {x - 4} \right)}}{{\left( {4 - x} \right)\left( {4 + x} \right)}} = \frac{{ - x\left( {4 - x} \right)}}{{\left( {4 - x} \right)\left( {4 + x} \right)}} = \frac{{ - x}}{{4 + x}}\)

b) Mẫu thức chung của hai phân thức nhân được ở câu a là: \(\left( {3{\rm{x}} - 1} \right)\left( {4 + x} \right)\)

Nhân tử phụ của \(\frac{1}{{3{\rm{x}} - 1}}\) là: \(4 + x\)

Nhân tử phụ của \(\frac{{ - x}}{{4 + x}}\) là : \(3{\rm{x}} - 1\)

Khi đó:

\(\frac{1}{{3{\rm{x}} - 1}} = \frac{{4 + x}}{{\left( {3{\rm{x}} - 1} \right)\left( {4 + x} \right)}}\)

\(\frac{{ - x}}{{4 + x}} = \frac{{ - x\left( {3{\rm{x}} - 1} \right)}}{{\left( {4 + x} \right)\left( {3{\rm{x}} - 1} \right)}}\)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a)

\(5{x^2} + 7{x^2} = (5 + 7){x^2} = 12{x^2}\);                             \(a{x^2} + b{x^2} = (a + b){x^2}\).

b) Muốn cộng hai đơn thức có cùng số mũ của biến, ta giữ nguyên biến và tính tổng của các hệ số có trong đơn thức.

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) \(2{x^2} - 6{x^2} = (2 - 6){x^2} =  - 4{x^2}\);                                                     \(a{x^k} - b{x^k} = (a - b){x^k}\).

b) Muốn trừ hai đơn thức có cùng số mũ của biến, ta giữ nguyên biến và tính hiệu của các hệ số có trong đơn thức.

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(\begin{array}{l}\frac{{2{{\rm{x}}^2} + 1}}{{4{\rm{x}} - 1}} = \frac{{8{{\rm{x}}^3} + 4{\rm{x}}}}{Q}\\ \Rightarrow Q = \frac{{\left( {8{{\rm{x}}^3} + 4{\rm{x}}} \right)\left( {4{\rm{x}} - 1} \right)}}{{2{{\rm{x}}^2} + 1}}\\Q = \frac{{4{\rm{x}}\left( {2{{\rm{x}}^2} + 1} \right)\left( {4{\rm{x}} - 1} \right)}}{{2{{\rm{x}}^2} + 1}}\\Q = 4{\rm{x}}\left( {4{\rm{x}} - 1} \right) = 16{{\rm{x}}^2} - 4{\rm{x}}\end{array}\)

Đáp án D

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

a) Ta có: \({x^3} - 8 = \left( {x - 2} \right)\left( {{x^2} + 2{\rm{x}} + 4} \right)\)

\(4 - 2{\rm{x}} = 2\left( {2 - x} \right) =  - 2\left( {x - 2} \right)\)

Mẫu thức chung là: \( - 2\left( {x - 2} \right)\left( {{x^2} + 2{\rm{x}} + 4} \right)\)

Nhân tử phụ của \({x^3} - 8\) là -2

Nhân tử phụ cuae 4 – 2x là \({x^2} + 2{\rm{x}} + 4\)

Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng, ta có:

\(\begin{array}{l}\frac{1}{{{x^3} - 8}} = \frac{{ - 2}}{{ - 2\left( {{x^3} - 8} \right)}}\\\frac{3}{{4 - 2{\rm{x}}}} = \frac{{3\left( {{x^2} + 2{\rm{x}} + 4} \right)}}{{\left( {4 - 2{\rm{x}}} \right)\left( {{x^2} + 2{\rm{x}} + 4} \right)}} = \frac{{3\left( {{x^2} + 2{\rm{x}} + 4} \right)}}{{ - 2\left( {{x^3} - 8} \right)}}\end{array}\)

b) Ta có: \(\begin{array}{l}{x^2} - 1 = \left( {x - 1} \right)\left( {x + 1} \right)\\{x^2} + 2{\rm{x}} + 1 = {\left( {x + 1} \right)^2}\end{array}\)

Mẫu thức chung là: \({\left( {x + 1} \right)^2}\left( {x - 1} \right)\)

Nhân tử phụ của \(\frac{x}{{{x^2} - 1}}\) là: x + 1

Nhân tử phụ của \(\frac{1}{{{x^2} + 2{\rm{x}} + 1}}\) là x – 1

Khi đó:

\(\frac{x}{{{x^2} - 1}} = \frac{{x\left( {x + 1} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}}\)

\(\frac{1}{{{x^2} + 2{\rm{x}} + 1}} = \frac{{x - 1}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

a) Ta có:

\(\begin{array}{l}\frac{{{x^2} + 5{\rm{x}}}}{{(x - 10)({x^2} + 10{\rm{x}} + 25)}} = \frac{{x\left( {x + 5} \right)}}{{\left( {x - 10} \right){{\left( {x + 5} \right)}^2}}} = \frac{x}{{\left( {x - 10} \right)\left( {x + 5} \right)}}\left( {x + 5 \ne 0} \right)\\ \Rightarrow P = \frac{x}{{\left( {x - 10} \right)\left( {x + 5} \right)}}\end{array}\)

\(\begin{array}{l}\frac{{{x^2} + 10{\rm{x}}}}{{{x^4} - 100{{\rm{x}}^2}}} = \frac{{x\left( {x + 10} \right)}}{{{x^2}\left( {{x^2} - 100} \right)}} = \frac{{x\left( {x + 10} \right)}}{{{x^2}\left( {x - 10} \right)\left( {x + 10} \right)}} = \frac{1}{{x\left( {x - 10} \right)}}\\ \Rightarrow Q = \frac{1}{{x\left( {x - 10} \right)}}\end{array}\)

b) MTC là: \(x\left( {x - 10} \right)\left( {x + 5} \right)\)

Nhân tử phụ của phân thức P là: x

Nhân tử phụ của phân thức Q là: (x + 5)

Khi đó:

\(P = \frac{x}{{\left( {x - 10} \right)\left( {x + 5} \right)}} = \frac{{x.x}}{{x\left( {x - 10} \right)\left( {x + 5} \right)}} = \frac{{{x^2}}}{{x\left( {x - 10} \right)\left( {x + 5} \right)}}\)

\(Q = \frac{1}{{x\left( {x - 10} \right)}} = \frac{{1.\left( {x + 5} \right)}}{{x\left( {x - 10} \right)\left( {x + 5} \right)}} = \frac{{x + 5}}{{x\left( {x - 10} \right)\left( {x + 5} \right)}}\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 1 2024

a) Ta có:

\(\begin{array}{l}C = {\left( {3{\rm{x}} - 1} \right)^2} + {\left( {3{\rm{x}} + 1} \right)^2} - 2\left( {3{\rm{x}} - 1} \right)\left( {3{\rm{x}} + 1} \right)\\C = {\left( {3{\rm{x}} - 1} \right)^2} - 2\left( {3{\rm{x}} - 1} \right)\left( {3{\rm{x}} + 1} \right) + {\left( {3{\rm{x}} + 1} \right)^2}\\C = {\left( {3{\rm{x}} - 1 - 3{\rm{x}} - 1} \right)^2}\\C = {\left( { - 2} \right)^2} = 4\end{array}\)

Vậy giá trị của biểu thức C = 4 không phụ thuộc vào biến x

b) Ta có:

\(\begin{array}{l}D = {\left( {x + 2} \right)^3} - {\left( {x - 2} \right)^3} - 12\left( {{x^2} + 1} \right) \\D = \left( {x + 2 - x + 2} \right)\left[ {{{\left( {x + 2} \right)}^2} + \left( {x + 2} \right)\left( {x - 2} \right) + {{\left( {x - 2} \right)}^2}} \right] - 12{{\rm{x}}^2} - 12\\D = 4.\left( {{x^2} + 4{\rm{x}} + 4 + {x^2} - 4 + {x^2} - 4{\rm{x}} + 4} \right) - 12{{\rm{x}}^2} - 12\\D = 4.\left( {3{{\rm{x}}^2} + 4} \right) - 12{{\rm{x}}^2} - 12\\D = 12{{\rm{x}}^2} + 16 - 12{{\rm{x}}^2} - 12 = 4\end{array}\)

Vậy giá trị của biểu thức D = 4 không phụ thuộc vào biến x

HQ
Hà Quang Minh
Giáo viên
10 tháng 1 2024

c) Ta có:

\(\begin{array}{l}E = \left( {x + 3} \right)\left( {{x^2} - 3{\rm{x}} + 9} \right) - \left( {x - 2} \right)\left( {{x^2} + 2{\rm{x}} + 4} \right)\\E = \left( {{x^3} + {3^3}} \right) - \left( {{x^3} - {2^2}} \right)\\E = {x^3} + 27 - {x^3} + 8 = 35\end{array}\)

Vậy giá trị của biểu thức E = 35 không phụ thuộc vào biến x

d) Ta có:

\(\begin{array}{l}G = \left( {2{\rm{x}} - 1} \right)\left( {4{{\rm{x}}^2} + 2{\rm{x}} + 1} \right) - 8\left( {x + 2} \right)\left( {{x^2} - 2{\rm{x}} + 4} \right)\\G = \left[ {{{\left( {2{\rm{x}}} \right)}^3} - {1^3}} \right] - 8\left( {{x^3} + {2^3}} \right)\\G = 8{{\rm{x}}^3} - 1 - 8{{\rm{x}}^3} - 64 =  - 65\end{array}\)

Vậy giá trị của biểu thức G = -65 không phụ thuộc vào biến x.