Cho hai đơn thức: \(2{{\rm{x}}^3}{y^4}\) và \( - 3{{\rm{x}}^3}{y^4}\)
a) Nêu hệ số của mỗi đơn thức trên.
b) So sánh phần biến của hai đơn thức trên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy: số mũ của x trong hai đơn thức trên bằng nhau (đều bằng 2).
b) \(2{x^2} + 3{x^2} = {x^2} + {x^2} + {x^2} + {x^2} + {x^2} = 5{x^2}\) .
c) Ta có: \((2 + 3){x^2} = 5{x^2}\).
Vậy \(2{x^2} + 3{x^2}\) = \((2 + 3){x^2}\).
Bài 2:
C=A-B
\(=2x^2-6xy+4y^2+5x^2-4xy-7y^2\)
\(=7x^2-10xy-3y^2\)
\(=7\cdot1^2-10\cdot1\cdot\dfrac{1}{2}-3\cdot\dfrac{1}{4}=7-5-\dfrac{3}{4}=2-\dfrac{3}{4}=\dfrac{5}{4}\)
a: \(B=-5x^5y\cdot9x^6y^8\cdot\left(-8\right)x^6y^9=360x^{17}y^{18}\)
b: Hệ số là 360
Phần biến là \(x^{17};y^{18}\)
Bậc là 35
b: Khi x=1 và y=-1 thì \(B=360\cdot1^{17}\cdot\left(-1\right)^{18}=360\)
\(\left(-2x^2y\right)^2=\left(-2\right)^2\cdot\left(x^2\right)^2\cdot\left(y\right)^2==4x^4y^2\)
a) Tích hai đơn thức trên : 4x4y2 . -3xy3 = [ 4 . ( -3 ) ] ( x4x ) ( y2y3 ) = -12x5y5
Bậc của đơn thức = 5 + 5 = 10
Hệ số : -12
Phần biến : x5y5
b) Thay x = -1 và y = 2 vào đơn thức tích ta có :
-12 . ( -1 )5 . 25
= -12 . ( -1 ) . 32
= 12 . 32
= 384
Vậy giá trị của đơn thức tích bằng 384 khi x = -1 ; y = 2
Ta có:
\(\begin{array}{l}(12{{\rm{x}}^3}{y^3} - 6{{\rm{x}}^4}{y^3} + 21{{\rm{x}}^3}{y^4}):(3{{\rm{x}}^3}{y^3})\\ = (12{{\rm{x}}^3}{y^3}):\left( {3{{\rm{x}}^3}{y^3}} \right) + \left( { - 6{{\rm{x}}^4}{y^3}} \right):\left( {3{{\rm{x}}^3}{y^3}} \right) + \left( {21{{\rm{x}}^3}{y^4}} \right):\left( {3{{\rm{x}}^3}{y^3}} \right)\\ = 4 - 2{\rm{x}} + 7y\end{array}\)
Thương của phép chia đa thức\(12{{\rm{x}}^3}{y^3} - 6{{\rm{x}}^4}{y^3} + 21{{\rm{x}}^3}{y^4}\) cho đơn thức \(3{{\rm{x}}^3}{y^3}\) là 4 – 2x +7y
a) Đơn thức: \(2{{\rm{x}}^3}{y^4}\) có hệ số là 2
Đơn thức: \( - 3{{\rm{x}}^3}{y^4}\) có hệ số là -3
b) Hai đơn thức \(2{{\rm{x}}^3}{y^4}\) và \( - 3{{\rm{x}}^3}{y^4}\) có cùng phần biến là: \({{\rm{x}}^3}{y^4}\)