cho b>0. So sánh \(\frac{a}{b}\)và \(\frac{a+1}{b+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: a < b => a + 1 < b + 1
b) Ta có: a < b => a - 2 < b - 2
Ta có:
\(1-\frac{-2015}{-2016}=1-\frac{2015}{2016}=\frac{1}{2016}\)
\(1-\frac{-2016}{-2017}=1-\frac{2016}{2017}=\frac{1}{2017}\)
Vì \(\frac{1}{2016}>\frac{1}{2017}\Rightarrow\frac{-2015}{-2016}< \frac{-2016}{-2017}\)
Đây là cách so sánh phần bù, bạn có thể lên mạng tham khảo thêm nhé :)
Để so sánh \(\frac{a}{b}\)và \(\frac{a+1}{b+1}\), ta đi so sánh hai số \(a\left(b+1\right)\)và \(b\left(a+1\right)\).
Xét hiệu:
\(a\left(b+1\right)-b\left(a+1\right)=ab+a-\left(ab+b\right)=a-b\)
Ta có 3 trường hợp, với điều kiện b > 0:
Trường hợp 1: Nếu \(a-b=0\Leftrightarrow a=b\)thì:
\(a\left(b+1\right)-b\left(a+1\right)=0\Leftrightarrow a\left(b+1\right)=b\left(a+1\right)\)
\(\Leftrightarrow\frac{a\left(b+1\right)}{b\left(a+1\right)}=\frac{b\left(a+1\right)}{a\left(b+1\right)}\Leftrightarrow\frac{a}{b}=\frac{a+1}{b+1}\)
Trường hợp 2: Nếu \(a-b< 0\Leftrightarrow a< b\)thì:
\(a\left(b+1\right)-b\left(a+1\right)< 0\Leftrightarrow a\left(b+1\right)< b\left(a+1\right)\)
\(\Leftrightarrow\frac{a\left(b+1\right)}{b\left(a+1\right)}< \frac{b\left(a+1\right)}{a\left(b+1\right)}\Leftrightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
Trường hợp 3: Nếu \(a-b>0\Leftrightarrow a>b\)thì:
\(a\left(b+1\right)-b\left(a+1\right)>0\Leftrightarrow a\left(b+1\right)>b\left(a+1\right)\)
\(\Leftrightarrow\frac{a\left(b+1\right)}{b\left(a+1\right)}>\frac{b\left(a+1\right)}{a\left(b+1\right)}\Leftrightarrow\frac{a}{b}>\frac{a+1}{b+1}\)
Ta có: \(a>b>0\)
\(\Rightarrow a^2>b^2\)
\(\Rightarrow a^2+a>b^2+b\)
\(\Rightarrow a^2+a+1>b^2+b+1\)
\(\Rightarrow\frac{1}{a^2+a+1}< \frac{1}{b^2+b+1}\)
\(\Rightarrow x< y\)
\(x=\frac{a+1}{a^2+a+1}=1-\frac{a^2}{a+a+1}\)
\(y=\frac{b+1}{1+b+b^2}=1-\frac{b^2}{1+b+b^2}\)
Do \(\frac{a^2}{a^2+a+1}>\frac{b^2}{b^2+b+1}\Rightarrow x< y\)
\(\frac{a^2}{1+a+a^2}\)
\(\frac{1}{1+a}\)
\(\frac{b^2}{1+b+b^2}\)=\(\frac{1}{1+b}\)
vì a>b nên \(\frac{a^2}{1+a+a^2}\)>\(\frac{b^2}{1+b+b^2}\)
1.
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2.
Ta có: a(b + n) = ab + an (1)
b(a + n) = ab + bn (2)
Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)
Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)
Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)
Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)
Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)
\(A=\frac{1+a+a^2+...+a^{n-1}}{1+a+a^2+...+a^n}=1+\frac{1}{a^n}\)
\(B=\frac{1+b+b^2+...+b^{n-1}}{1+b+b^2+...+b^n}=1+\frac{1}{b^n}\)
Vì \(a>b\) nên \(1+\frac{1}{a^n}< 1+\frac{1}{b^n}\)
Vậy \(A< B\)
Chúc bạn học tốt ~
sai đề rồi bạn.\(\frac{a}{b}>\frac{a+c}{b+c}\) với \(a>b\) mới đúng nha.
Ta có:\(A=\frac{10^{17}+1}{10^{16}+1}>\frac{10^{17}+1+9}{10^{16}+1+9}=\frac{10^{17}+10}{10^{16}+10}=\frac{10\left(10^{16}+1\right)}{10\left(10^{15}+1\right)}=\frac{10^{16}+1}{10^{15}+1}\)
\(\Rightarrow A>B\)
Xét 3 trường hợp :
+) Nếu b > a thì \(\frac{a}{b}=\frac{b-m}{b}=\frac{b}{b}-\frac{m}{b}=1-\frac{m}{b}\)
\(\frac{a+1}{b+1}=\frac{b-m+1}{b+1}=\frac{b+1-m}{b+1}=\frac{b+1}{b+1}-\frac{m}{b+1}=1-\frac{m}{b+1}\)
Vì \(\frac{m}{b}>\frac{m}{b+1}\)nên \(1-\frac{m}{b}< 1-\frac{m}{b+1}\)hay \(\frac{a}{b}< \frac{a+1}{b+1}\)
+) Nếu a = b thì \(\frac{a}{b}=1\)
\(\frac{a+1}{b+1}=1\)nên\(\frac{a}{b}=\frac{a+1}{b+1}\)
+) Nếu a > b thì \(\frac{a}{b}=\frac{b+m}{b}=\frac{b}{b}+\frac{m}{b}=1+\frac{m}{b}\)
\(\frac{a+1}{b+1}=\frac{b+m+1}{b+1}=\frac{b+1}{b+1}+\frac{m}{b+1}=1+\frac{m}{b+1}\)
Vì \(\frac{m}{b}>\frac{m}{b+1}\)nên \(1+\frac{m}{b}>1+\frac{m}{b+1}\)hay \(\frac{a}{b}>\frac{a+1}{b+1}\)
Ta có :
\(\frac{a}{b}=\frac{a\left(b+1\right)}{b\left(b+1\right)}=\frac{ab+a}{b^2+b}\)
\(\frac{a+1}{b+1}=\frac{b\left(a+1\right)}{b\left(b+1\right)}=\frac{ab+b}{b^2+b}\)
Từ 2 ý trên , ta xét từng trường hợp sau :
a < b thì \(\frac{a}{b}< \frac{a+1}{b+1}\)
a > b thì \(\frac{a}{b}>\frac{a+1}{b+1}\)
a = b thì \(\frac{a}{b}=\frac{a+1}{b+1}\)