K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

2xy - x + 2y = 3

x(2y - 1) + 2y = 3

x(2y - 1) + 2y - 1 = 2

<=> (x + 1)(2y - 1) = 2

Vì x ; y là các số nguyên nên x + 1 và 2y - 1 thuộc ước của 2

Ta có Ư(2) = { - 2; - 1; 1; 2 }

Mà 2y - 1 là số nguyên lẻ => 2y - 1 chỉ có thể bằng - 1 hoặc 1

Với 2y - 1 = - 1 thì x + 1 = - 2 => y = 0 thì x = - 3 

Với 2y - 1 = 1 thì x + 1 = 2 => y = 1 thì x = 1

Vậy ( x;y ) = { (-3;0) ; (1;1) }

10 tháng 6 2017

\(2xy-x+2y=3\)

\(\Leftrightarrow\left(2x+2\right)y-x=3\)

\(\Leftrightarrow\left(2x+2\right)y-x-3=0\)

\(\Leftrightarrow2\left(x+1\right)=0\)

\(\Leftrightarrow2x=-2\)

\(\Leftrightarrow\orbr{\begin{cases}x+1\ne0\\y=\frac{x+3}{2\left(x+1\right)}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\y=0\end{cases}};x=y=1\)

25 tháng 6 2023

a, (3 - \(x\))(4y + 1) = 20

   Ư(20) = { -20; -10; -5; -4; -2; -1; 1; 2; 4; 5; 10; 20}

Lập bảng ta có:

\(3-x\) -20 -10 -5 -4 -2 -1 1 2 4 5 10 20
\(x\) 23  13 8 7 5 4 2 1 -1 -2 -7 -17
4\(y\) + 1 -1 -2 -4 -5 -10 -20 20 10 5 4 2 1
\(y\) -1/2 -3/4 -5/4 -6/4 -11/4 -21/4 19/4 9/4 1 3/4 1/4 0

Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là:

(\(x;y\)) =(-1; 1); (-17; 0)

 

 

25 tháng 6 2023

b, \(x\left(y+2\right)\)+ 2\(y\) = 6

    \(x\) = \(\dfrac{6-2y}{y+2}\)

\(x\in\) Z ⇔ 6 - \(2y⋮\) \(y\) + 2 ⇒-(2y + 4) +10 ⋮ \(y\) + 2 ⇒ -2(\(y\)+2) +10 ⋮ \(y\)+2

⇒ 10 ⋮ \(y\) + 2

Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}

Lập bảng ta có:

\(y+2\) -10 -5 -2 -1 1 2 5 10
\(y\) -12 -7 -4 -3 -1 0 3 8
\(x=\) \(\dfrac{6-2y}{y+2}\) -3 -4 -7 -12 8 3 0 -1

 Theo bảng trên ta có các cặp \(x;y\)

 nguyên thỏa mãn đề bài lần lượt là:

(\(x;y\)    ) =(-3; -12); (-4; -7); (-12; -3); (8; -1); (3; 0); (0;3 (-1; 8)                           

 

26 tháng 6 2023

6xy+4x-3y=8
=> 6xy -3y=8-4x
=>3y(2x-1)= -2(2x-1) +6
=>(2x-1)(3y+2)=6
mà x,y thuộc Z =>(2x-1),(3y+2)  thuộc Z =>(2x-1),(3y+2) thuộc U(6)   xong giải ra bình thường nhé mấy câu sau tương tự 
 

26 tháng 6 2023

chị giải nốt cho em phần a với ạ

 

DD
8 tháng 3 2022

\(2xy-5x-2y=12\)

\(\Leftrightarrow x\left(2y-5\right)-2y+5=17\)

\(\Leftrightarrow\left(x-1\right)\left(2y-5\right)=17\)

Vì \(x,y\)nguyên nên \(x-1,2y-5\)là các ước của \(17\).

Ta có bảng giá trị: 

x-1-17-1117
2y-5-1-17171
x-160218
y2-6113

2xy-3x-2y=2

\(\Leftrightarrow x\left(2y-3\right)-2y+3=5\)

=>\(\left(2y-3\right)\left(x-1\right)=5\)

=>\(\left(x-1;2y-3\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(2;4\right);\left(6;2\right);\left(0;-1\right);\left(-4;1\right)\right\}\)

20 tháng 2 2020

a) Vì 2x-1 là bội của x+5 nên 2x-1 \(⋮\)x+5

=> x+5 \(⋮\)x+5

=> ( 2x-1) - ( x+5) \(⋮\)x+5

=> (2x-1) - 2(x+5) \(⋮\)x+5

=> 2x -1 - 2x -10 \(⋮\)x+5

=> -11 \(⋮\)x+5

=> x+5 \(\in\)Ư(11) ={ 1;11; -1; -11}

=> x\(\in\){ -4; 6; -6; -16}

Vậy....

21 tháng 2 2020

Camr own bn nha

22 tháng 2 2020

(x-1)(2y-1)= 11

=> x-1 thuộc B(11) ={ 1; 11;-1;-11}

=> x thuộc{ 2; 12; 0; -10}

Sau đó thay vào tìm y nha. Tui đi tơiiii đâyy

2xy-2y+x=11

=>x.(2y+1)-1.(2y+1)=12

=>(x-1).(2y+1)=12

=>12\(⋮\)x-1

=>x-1\(\in\)Ư(12)={\(\pm\)1;\(\pm\)2;\(\pm\)3;\(\pm\)4;\(\pm\)6;\(\pm\)12}

+)Ta có bảng:

x-1-11-22-33-44-66-1212
2y+1-1212-66-44-33-22-11
x0\(\in\)Z2\(\in\)Z-1\(\in\)Z3\(\in\)Z-2\(\in\)Z4\(\in\)Z-3\(\in\)Z5\(\in\)Z-5\(\in\)Z7\(\in\)Z-11\(\in\)Z13\(\in\)Z
y\(\frac{-13}{2}\)\(\notin\)Z\(\frac{11}{2}\)\(\notin\)Z\(\frac{-7}{2}\text{​​}\)\(\notin\)Z\(\frac{5}{2}\)\(\notin\)Z\(\frac{-5}{2}\)\(\notin\)Z\(\frac{3}{2}\)\(\notin\)Z-2\(\in\)Z1\(\in\)Z\(\frac{-3}{2}\)\(\notin\)Z\(\frac{1}{2}\)\(\notin\)Z-1\(\in\)Z0\(\in\)Z

Vậy (x,y)\(\in\){(-3;-2);(5;1);(-11;-1);(13;0)}

Chúc bn học tốt

theo minh buoc 1 la nhom 2xy voi 2y

( x - 7 ) ( 2y + 3 ) = 32 

<=> ( 2x - 14 ) y + 3x - 21 = 32

<=> ( 2x - 14) y + 3x - 32 - 21 = 0 

<=> ( 2x - 14 ) y + 3x - 53 = 0 

<=> ( 2x - 7) = 0 

<=> 2x=2.7 

<=> x = 7 

<=> 2y + 3 = 0 

<=> 2y = -3 

<=> y = -1,5 

19 tháng 2 2018

Có \(2xy+3x-2y=20\)

\(\Rightarrow\left(2xy-2y\right)+3x=20\)

\(\Rightarrow2y\left(x-1\right)+3x=20\)

\(\Rightarrow2y\left(x-1\right)+3x-3=20-3\)

\(\Rightarrow2y\left(x-1\right)+3\left(x-1\right)=17\)

\(\Rightarrow\left(2y+3\right)\left(x-1\right)=17\)

\(\Rightarrow\hept{\begin{cases}2y+3\inƯ\left(17\right)\\x-1\inƯ\left(17\right)\end{cases}}\)

Ta có bảng giá trị sau:

2y+3117-17-1
x-1171-1-17
x1820-16
y-17-10-2

Vậy các cặp (x;y) thỏa mãn là (18;-1),(2;7),(0;-10);(-16;-2)

23 tháng 1 2021

\(2xy+x+2y+4=2\)

=> \(x\left(2y+1\right)+\left(2y+1\right)=-1\)

=> \(\left(x+1\right)\left(2y+1\right)=-1\)

Ta có bảng:

x+11-1
2y+1-11
x0-2
2y-20
y-10

 

Vậy các cặp số (x;y) tmđb là (0;-1);(-2;0)

23 tháng 1 2021

Mình nghĩ là đề : xy sẽ hay hơn 

\(xy+x+2y+4=2\)

\(\Leftrightarrow xy+x+2y+4-2=0\)

\(\Leftrightarrow xy+x+2y+2=0\)

\(\Leftrightarrow x\left(y+1\right)+2\left(y+1\right)=0\)

\(\Leftrightarrow\left(y+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)