K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

\(=2\frac{4}{\sqrt{5}}-5\frac{3}{5\sqrt[]{5}}-6\frac{11}{3\sqrt{5}}\)

\(=\frac{2.4.15-5.3.3-6.11.5}{15\sqrt{5}}\)

\(=\frac{-255}{15\sqrt{5}}=\frac{-17\sqrt{5}}{5}\)

10 tháng 10 2020

Bài 1:

a) \(5\sqrt{\frac{1}{5}}+\frac{1}{3}\sqrt{45}+\frac{5-\sqrt{5}}{\sqrt{5}}\)

\(=\sqrt{5}+\sqrt{5}+\sqrt{5}-1\)

\(=3\sqrt{5}-1\)

b) \(\sqrt{48}-6\sqrt{\frac{1}{3}}+\frac{\sqrt{3}-3}{\sqrt{3}}\)

\(=4\sqrt{3}-2\sqrt{3}+1-\sqrt{3}\)

\(=\sqrt{3}+1\)

c) \(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right)\div\left(\frac{1}{\sqrt{5}-\sqrt{2}}\right)\)

\(=\left(-\sqrt{2}-\sqrt{5}\right)\div\frac{\sqrt{5}+\sqrt{2}}{5-2}\)

\(=-\left(\sqrt{2}+\sqrt{5}\right)\cdot\frac{3}{\sqrt{5}+\sqrt{2}}\)

\(=-3\)

10 tháng 10 2020

Bài 2:

đk: \(x\ge1\)

Ta có: \(\sqrt{4x+4}-\sqrt{9x-9}-8\sqrt{\frac{x+1}{16}}=5\)

\(\Leftrightarrow2\sqrt{x+1}-3\sqrt{x-1}-2\sqrt{x+1}=5\)

\(\Leftrightarrow-3\sqrt{x-1}=5\)

\(\Rightarrow\sqrt{x-1}=-\frac{5}{3}\) (vô lý)

=> PT vô nghiệm

23 tháng 5 2021

Mình ghi nhầm. \(x=\frac{\sqrt{4+2\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)nhé

13 tháng 8 2018

\(B=\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}=\frac{9\sqrt{5}+9\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)

\(C=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}.\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\sqrt{2}+1\)

mik chỉnh lại đề

\(D=\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}=\frac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}\)

\(=\frac{2\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}{3\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}=\frac{2}{3}\)

11 tháng 5 2024

$\dfrac{\sqrt{3}}{8}a^3$.

23 tháng 8 2023

a) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\)

\(=\left[-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right]\cdot\left(\sqrt{2}-\sqrt{5}\right)\)

\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)

\(=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)

\(=-\left(2-5\right)\)

\(=-\left(-3\right)\)

\(=3\)

b) Ta có:

\(x^2-x\sqrt{3}+1\) 

\(=x^2-2\cdot\dfrac{\sqrt{3}}{2}\cdot x+\left(\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)

\(=\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)

Mà: \(\left(x-\dfrac{\sqrt{3}}{2}\right)^2\ge0\forall x\) nên

\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\forall x\)

Dấu "=" xảy ra:

\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}=\dfrac{1}{4}\)

\(\Leftrightarrow x=\dfrac{\sqrt{3}}{2}\)

Vậy: GTNN của biểu thức là \(\dfrac{1}{4}\) tại \(x=\dfrac{\sqrt{3}}{2}\)

23 tháng 8 2023

a)

\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\\ =\left(-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =\left(-\sqrt{2}-\sqrt{5}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}^2-\sqrt{5}^2\right)\\ =-\left(2-5\right)\\ =-\left(-3\right)\\ =3\)

2 tháng 10 2016

\(D=\sqrt{\frac{\left(5+2\sqrt{6}\right)^2}{25-24}}+\sqrt{\frac{\left(5-2\sqrt{6}\right)^2}{25-24}}=5+2\sqrt{6}+5-2\sqrt{6}=10\)

14 tháng 11 2019

\(\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}+\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}-\sqrt{5}}\)

\(=\frac{\left(\sqrt{6}-\sqrt{5}\right)^2}{\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)}+\frac{\left(\sqrt{6}+\sqrt{5}\right)^2}{\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)}\)

\(=\frac{\left(\sqrt{6}-\sqrt{5}\right)^2+\left(\sqrt{6}+\sqrt{5}\right)^2}{\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)}\)

\(=\frac{11-2\sqrt{30}+11+2\sqrt{30}}{\left(\sqrt{6}\right)^2-\left(\sqrt{5}\right)^2}\)

\(=\frac{22}{1}=22\)

14 tháng 11 2019

\(\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}+\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}-\sqrt{5}}\)

\(=\frac{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)+\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)}\)

\(=\frac{\left(\sqrt{6}-\sqrt{5}\right)^2+\left(\sqrt{6}+\sqrt{5}\right)^2}{\sqrt{6}^2+\sqrt{5}^2}\)

\(=\sqrt{6}^2-2\sqrt{6}.\sqrt{5}+\sqrt{5}^2+\sqrt{6}^2+2\sqrt{6}.\sqrt{5}+\sqrt{5}^2\)

\(=6+5+6+5=22\)