Thu gọn biểu thức sau
\(\left(\sqrt{3}+1\right)\sqrt{\frac{14-6\sqrt{3}}{5+\sqrt{3}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình không viết lại đề nha
\(=\sqrt{\frac{\left(\sqrt{3}+1\right)^2.\left(14-6\sqrt{3}\right)}{5+\sqrt{3}}}\)
\(=\sqrt{\frac{\left(3+2\sqrt{3}+1\right).\left(14-6\sqrt{3}\right)}{5+\sqrt{3}}}\)
\(=\sqrt{\frac{\left(4+2\sqrt{3}\right).\left(14-6\sqrt{3}\right)}{5+\sqrt{3}}}\)
\(=\sqrt{\frac{56-24\sqrt{3}+28\sqrt{3}-36}{5+\sqrt{3}}}\)
\(=\sqrt{\frac{20+4\sqrt{3}}{5+\sqrt{3}}}\)
\(=\sqrt{\frac{\left(20+4\sqrt{3}\right).\left(5-\sqrt{3}\right)}{\left(5+\sqrt{3}\right).\left(5-\sqrt{3}\right)}}\)
\(=\sqrt{\frac{100-20\sqrt{3}+20\sqrt{3}-12}{5^2-\sqrt{3}^2}}\)
\(=\sqrt{\frac{88}{25-3}}\)
\(=\sqrt{\frac{88}{22}}\)
\(=\sqrt{4}\)
\(=2\)
HỌC TỐT !!!
\(A=\left(\sqrt{3}+1\right)\sqrt{\frac{14-6\sqrt{3}}{5+\sqrt{3}}}=\left(\sqrt{3}+1\right)\sqrt{\frac{20+4\sqrt{3}-10\sqrt{3}-6}{5+\sqrt{3}}}=\left(\sqrt{3}+1\right)\sqrt{\frac{4\left(5+\sqrt{3}\right)-2\sqrt{3}\left(5+\sqrt{3}\right)}{5+\sqrt{3}}}=\left(\sqrt{3}+1\right)\sqrt{\frac{\left(4-2\sqrt{3}\right)\left(5+\sqrt{3}\right)}{5+\sqrt{3}}}=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}=\left(\sqrt{3}+1\right)\sqrt{3-2\sqrt{3}+1}=\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3}-1\right)^2}=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=3-1=2\Rightarrow A=2\)
\(A=\frac{\left(\sqrt{3}+1\right)\left(14-6\sqrt{3}\right)\left(5-\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}=\frac{4\left(11\sqrt{3}-11\right)}{25^2-\left(\sqrt{3}\right)^2}=\frac{44\left(\sqrt{3}-1\right)}{22}=2\sqrt{3}-2\)
\(\sqrt{\left(\sqrt{5}+3\right)^2}+\sqrt{14-6\sqrt{5}}\)\(=\left|\sqrt{5}+3\right|+\sqrt{9-2.3\sqrt{5}+5}\)
\(=\sqrt{5}+3+\sqrt{\left(3-\sqrt{5}\right)^2}\) \(=\sqrt{5}+3+\left|3-\sqrt{5}\right|\)
\(=\sqrt{5}+3+3-\sqrt{5}=6\) ( do \(3-\sqrt{5}>0\))
\(a,=\dfrac{\sqrt{5}+1+\sqrt{5}-1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}=\dfrac{2\sqrt{5}}{4}=\dfrac{\sqrt{5}}{2}\\ b,=\sqrt{\left(3-\sqrt{5}\right)^2}+\left|2-\sqrt{5}\right|=3-\sqrt{5}+\sqrt{5}-2=1\\ c,=\dfrac{2\left(\sqrt{5}-\sqrt{3}\right)}{2}-\dfrac{-\sqrt{3}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}=\sqrt{5}-\sqrt{3}+\sqrt{3}=\sqrt{5}\)
\(=\left(\sqrt{3}+1\right)\sqrt{\frac{\left(14-6\sqrt{3}\right)\left(5-\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}}\)
\(=\left(\sqrt{3}+1\right)\sqrt{\frac{70-14\sqrt{3}-30\sqrt{3}+18}{25-\sqrt{3}^2}}\)
\(=\left(\sqrt{3}+1\right)\sqrt{\frac{88-44\sqrt{3}}{22}}\)
\(=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}\)