K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2023

\(\dfrac{x}{\sqrt{x}-1}\ge0\) (ĐK: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\))

\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\\sqrt{x}-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ge0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\x< 1\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge0\\x\ge1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< 0\left(ktm\right)\\x\ge1\end{matrix}\right.\) (mà \(x\ne1\))

\(\Leftrightarrow x>1\)

20 tháng 2 2022

\(4x^2+4x+1+4x+2-2x^2-x\le0\)

\(\Leftrightarrow2x^2+7x+3\le0\Leftrightarrow\left(2x+1\right)\left(x+3\right)\le0\)

TH1 : \(\left\{{}\begin{matrix}2x+1\ge0\\x+3\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\x\le-3\end{matrix}\right.\)<=> -1/2 =< x =< -3 

TH2 : \(\left\{{}\begin{matrix}2x+1\le0\\x+3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le-\dfrac{1}{2}\\x\ge-3\end{matrix}\right.\)( vô lí ) 

NV
26 tháng 2 2021

ĐKXĐ: \(x^2\ge2\)

Đặt \(\sqrt{x^2-2}=a\ge0\)

BPT tương đương: \(\dfrac{1}{\sqrt{a^2+3}}+\dfrac{1}{\sqrt{3a^2+11}}\le\dfrac{2}{a+1}\)

Ta có: \(VT^2\le2\left(\dfrac{1}{a^2+3}+\dfrac{1}{3a^2+11}\right)< 2\left(\dfrac{1}{a^2+3}+\dfrac{1}{3a^2+1}\right)=\dfrac{8\left(a^2+1\right)}{\left(3a^2+1\right)\left(a^2+3\right)}\)

Mặt khác ta có: \(\left(a-1\right)^4\ge0\Leftrightarrow a^4-4a^3+6a^2-4a+1\ge0\)

\(\Leftrightarrow3a^4+10a^2+3\ge2a^4+4a^3+4a^2+4a+2\)

\(\Leftrightarrow\left(3a^2+1\right)\left(a^2+3\right)\ge2\left(a^2+1\right)\left(a+1\right)^2\)

\(\Rightarrow\dfrac{8\left(a^2+1\right)}{\left(3a^2+1\right)\left(a^2+3\right)}\le\dfrac{4}{\left(a+1\right)^2}\)

\(\Rightarrow VT^2< \dfrac{4}{\left(a+1\right)^2}\Rightarrow VT< \dfrac{2}{a+1}\)

\(\Rightarrow\) BPT đã cho đúng với mọi \(a\ge0\) hay nghiệm của BPT là \(x^2\ge2\)

NV
26 tháng 2 2021

ĐKXĐ: \(x>0\)

\(\Leftrightarrow\sqrt{\dfrac{\left(x^2+x+1\right)\left(x^2-x+1\right)}{x\left(x^2+1\right)}}-\sqrt{\dfrac{x^2+x+1}{x^2+1}}+\dfrac{\left(x-1\right)^2}{x}\ge0\)

\(\Leftrightarrow\sqrt{\dfrac{x^2+x+1}{x^2+1}}\left(\sqrt{\dfrac{x^2-x+1}{x}}-1\right)+\dfrac{\left(x-1\right)^2}{x}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-1\right)^2}{\sqrt{x^2-x+1}+\sqrt{x}}.\sqrt{\dfrac{x^2+x+1}{x^2+1}}+\dfrac{\left(x-1\right)^2}{x}\ge0\) (luôn đúng \(\forall x>0\))

Vậy nghiệm của BPT đã cho là \(x>0\)

11 tháng 6 2021

`sqrt{x-2}-2>=sqrt{2x-5}-sqrt{x+1}`

`đk:x>=5/2`

`bpt<=>\sqrt{x-2}+\sqrt{x+1}>=\sqrt{2x-5}+2`

`<=>x-2+x+1+2\sqrt{(x-2)(x+1)}>=2x-5+4+4\sqrt{2x-5}`

`<=>2x-1+2\sqrt{(x-2)(x+1)}>=2x-1+4\sqrt{2x-5}`

`<=>2\sqrt{(x-2)(x+1)}>=4\sqrt{2x-5}`

`<=>sqrt{x^2-x-2}>=2sqrt{2x-5}`

`<=>x^2-x-2>=4(2x-5)`

`<=>x^2-x-2>=8x-20`

`<=>x^2-9x+18>=0`

`<=>(x-3)(x-6)>=0`

`<=>` \(\left[ \begin{array}{l}x \ge 6\\x \le 3\end{array} \right.\) 

Kết hợp đkxđ:

`=>` \(\left[ \begin{array}{l}x \ge 6\\\dfrac52 \le x \le 3\end{array} \right.\) 

19 tháng 3 2021

1.

ĐKXĐ: \(x=2\)

Xét \(x=2\), bất phương trình vô nghiệm

\(\Rightarrow\) bất phương trình đã cho vô nghiệm

\(\Rightarrow\) Không tồn tại \(a,b\) thỏa mãn

Đề bài lỗi chăng.