79. Cho \(\Delta ABC\), trung tuyến AM cũng là phân giác.
a) Chứng minh \(\Delta ABC\)cân
b) Cho biết AB=37, AM=35, tính BC
Giải nhanh cho tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét\(\Delta\)AMB &\(\Delta\)AMC có:
BM=CM(AM là đg trung tuyến )
Góc BAM= góc CAM(AM là tia pg của góc A)
AM là cạnh chung
=>\(\Delta\)AMB=\(\Delta\)AMC(c.g.c)
=>AB=AC(2 cạnh tương ứng)
=>\(\Delta\)ABC cân tại A
b) theo a:\(\Delta\)AMB=\(\Delta\)AMC
=>góc AMB= góc AMC(2 góc tương ứng)
ta có: góc AMC+ góc AMB=180 độ(2 góc kề bù )
=>góc AMB+ góc AMB=180ĐỘ
=>góc AMB= góc AMC=90 độ
Xét \(\Delta\)AMB vuông tại M
=>AB^2=AM^2+BM^2(định lí pytago)
=>37^2=BM^2+35^2
=>BM^2=37^2-35^2=144=12^2
=>BM=12
=>CM=12
ta có:BC+BM+CM=12+12=24
a) Xét ΔABC có AB=AC=5
=> ΔABC cân tại A
ta có AM là trung tuyến => AM là đường phân giác của góc A (tc Δ cân)
=>\(\widehat{B}=\widehat{C}\)(tc)
Xét ΔABM và ΔACM có
AB=AC gt
có AM là trung tuyến => BM=CM
\(\widehat{B}=\widehat{C}\) (cmt)
=>ΔABM = ΔACM (cgc)
b) có ΔABC cân
mà AM là trung tuyến => AM là đường cao (tc Δ cân)
c) ta có AM là trung tuyến =>
M là trung điểm của BC
=> BM=CM=\(\dfrac{BC}{2}=\dfrac{6}{2}=3\)cm
Xét ΔABM có AM là đường cao => \(\widehat{AMB}=\)90o
=> AM2+BM2=AB2
=> AM2+32=52
=> AM =4 cm
d) Xét ΔBME và ΔCMF có
\(\widehat{MEB}=\widehat{MFC}=\)90o (ME⊥AB,MF⊥AC)
BM=CM (cmt)
\(\widehat{B}=\widehat{C}\)
=>ΔBME = ΔCMF (ch-cgv)
=>EM=FM( 2 góc tương ứng)
Xét ΔMEF có
EM=FM (cmt)
=> ΔMEF cân tại M
a, Xét \(\Delta MAB\) và \(\Delta MAC\) có:
AB = AC (gt)
MB = MC (gt)
AM là cạnh chung
\(\Rightarrow\Delta MAB=\Delta MAC\) (c.c.c)
b, Vì \(\Delta MAB=\Delta MAC\Rightarrow\widehat{AMB}=\widehat{AMC}\) (hai góc tương ứng) (1)
Mà \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù) (2)
Từ (1) và (2) => \(\widehat{AMB}=\widehat{AMC}=90^o\)
Vậy \(AM⊥BC\)
c, Từ \(\Delta MAB=\Delta MAC\Rightarrow\widehat{BAM}=\widehat{CAM}\) (hai góc tương ứng)
Vậy AM là tia phân giác của góc BAC
Bài 1:
a: Ta có; ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: BM=CM=16cm
\(AM=\sqrt{34^2-16^2}=30\left(cm\right)\)
AG=2/3AM=20(cm)
bạn tự vẽ hình nha
a) trong tam giác ABC có AM vừa là phân giác vừa là trung tuyến
=> tam giác ABC cân ( theo tính chất trong tam giác cân)
b) trong tam giác cân đường trung tuyến cũng đồng thời là đường phân giác,đường cao, đường trung trực
xét tam giác ABM có \(\widehat{AMB}=90^O\)( AM là đường cao)
theo định lí pitago ta có
\(AM^2+BM^2=AB^2\)
=> \(BM^2=AB^2-AM^2\)
=> 372-352=BM2=144
=> BM=\(\sqrt{144}=12\)
mà M là trung điểm BC ( tính chất trong tam giác cân)
=> BC=2.BM=2.12=24