Chứng minh rằng :
A = 1/2! + 1/3! + 1/4! + ..... + 1/100! < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A \(=\) \(\frac{1}{3}+\frac{2}{3^2}+...+\frac{100}{3^{100}}\)
=> 3A\(=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
=> 3A- A \(=\) 2A \(=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
Đặt B \(=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)=>\(3B=3+1+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)
=> 2B \(=3-\frac{1}{3^{99}}<3\) =>B < \(\frac{3}{2}\) => 2A< \(\frac{3}{2}\) => A < \(\frac{3}{4}\)
ĐÚNG CÁI NHÉ BẠN
a, Gọi d là ƯC(12n + 1; 30n + 2 ), ta có :
12n + 1 chia hết cho d => 5( 12n + 1 ) chia hết cho d
30n + 2 chia hết cho d => 2 ( 30n + 2 ) chia hết cho d
-> 5( 12n + 1 ) - 2( 30n + 2 ) chia hết cho d
=> 1 chia hết cho d
vậy d = 1 nên 12n + 1 và 30n + 2 nguyên tố cùng nhau
=> \(\frac{12n+1}{30n+2}\)là phân số tối giản
b, ta có : \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
.....
\(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}=\frac{99}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
Gọi d là ƯC của 4n + 7 và 6n + 1
Khi đó : 4n + 7 chia hết cho d và 6n + 1 chia hết cho d
<=> 12n + 21 chia hết cho d và 12n + 2 chia hết cho d
=> (12n + 21) - ( 12n + 2) chia hết cho d = > 19 chia hết cho d
Vì 19 là số nguyên tố => d = 1
Vậy \(\frac{4n+7}{6n+1}\) Là p/s tối giản
Nếu n = 3 thì 4n+7/6n+1=1 đâu phải là phân số tối giản
ta có
1/2^2 < 1/(1.2)= 1-1/2
1/3^2 <1/(2.3)=1/2-1/3
1/4^2 <1/(3.4)=1/3-1/4
......
1/100^2 < 1/99-1/100
cộng vế với vế ta được 1/2^2 +1/3^2+...< 1-1/2+1/2-1/3+....+1/99-1/100=1-1/100
=> 100/100-1/100
=>99/100
tk nha bn
\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\Rightarrow A< 1\)
Vậy A<1
ta có :
\(\frac{1}{2!}=\frac{1}{1.2}\)
\(\frac{1}{3!}=\frac{1}{1.2.3}=\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4!}=\frac{1}{1.2.3.4}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
\(\frac{1}{5!}=\frac{1}{1.2.3.4.5}< \frac{1}{4.5}=\frac{1}{4}-\frac{1}{5}\)
...................................................................................................
\(\frac{1}{99!}=\frac{1}{1.2.3...98.99}< \frac{1}{98.98}=\frac{1}{98}-\frac{1}{99}\)
\(\frac{1}{100!}=\frac{1}{1.2.3....99.100}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
cộng vế với vế có
\(A=\frac{1}{2!}+\frac{1}{3!}+..+\frac{1}{100!}< \frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}< 1\)DPCM