Cho 2 số a,b không âm.Chứng minh:
a) Nếu a < b thì \(\sqrt{a}\)< \(\sqrt{b}\)
b) Nếu \(\sqrt{a}\)< \(\sqrt{b}\)thì a < b.
Giúp với!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh bằng biến đổi tương đương :
\(\frac{a+b}{2}\ge\sqrt{ab}\) \(\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge\) (luôn đúng)
Bđt cuối luôn đúng nên bđt ban đầu được chứng minh.
Dấu "=" xảy ra khi \(\sqrt{a}-\sqrt{b}=0\Leftrightarrow a=b\) (a,b không âm)
a, Vì a,b không âm:
\(\Rightarrow\sqrt{a}+\sqrt{b}>0\)
Có \(a-b>0\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)>0\)
Mà \(\Rightarrow\sqrt{a}+\sqrt{b}>0\)
\(\Rightarrow\sqrt{a}-\sqrt{b}>0\Leftrightarrow\sqrt{a}>\sqrt{b}\)
b, Tương tự phần a:
\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)>0\Leftrightarrow a-b>0\Leftrightarrow a>b\)
( đổi ngược dấu a,b lại giúp mình nhé.)
Mới nghĩ ra câu a) 1 kiểu khác nhưng không biết đúng không :> nó vẫn ra hq như nhau thôi
Do a,b không âm và a < b nên b > 0 , suy ra :
\(\sqrt{a}+\sqrt{B}>0\) ( 1 )
Mặt khác , ta có :
\(a-b=\left(\sqrt{a}\right)^2-\left(\sqrt{b^2}\right)=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)( 2 )
Vì a < b nên a - b < 0 , từ ( 2 ) suy ra :
\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)< 0\)( 3 )
Từ (1) và (3) , suy ra :
\(\sqrt{a}-\sqrt{b}< 0\)hay \(\sqrt{a}< \sqrt{b}\)
\(a,\)\(a< b\Rightarrow a-b< 0\)
\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)< 0\)
Vì \(\sqrt{a}+\sqrt{b}>0\)
\(\Rightarrow\sqrt{a}-\sqrt{b}< 0\)\(\Rightarrow\sqrt{a}< \sqrt{b}\)\(\left(đpcm\right)\)
\(b,\)\(\sqrt{a}< \sqrt{b}\)\(\Rightarrow\sqrt{a}-\sqrt{b}< 0\)
Ta có :\(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=a-b\)
Mà \(\sqrt{a}-\sqrt{b}< 0\); \(\sqrt{a}+\sqrt{b}>0\)
\(\Rightarrow a-b< 0\)\(\Leftrightarrow a< b\)
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
Ta có \(\sqrt{a}\)= a2
\(\sqrt{b}\)=b2
Vì a < b \(\Rightarrow\)a2 < b2 \(\Leftrightarrow\)\(\sqrt{a}\)<\(\sqrt{b}\)
Lật ra phần sau sách bài tập í
Nói như bạn thif tôi cũng k cần hỏi làm gì cho mất công