K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

 

a) \(M\) là trung điểm của \(SC\)

\(O\) là trung điểm của \(AC\) (theo tính chất hình bình hành)

\( \Rightarrow OM\) là đường trung bình của tam giác \(SAC\)

\(\left. \begin{array}{l} \Rightarrow OM\parallel SA\\SA \subset \left( {SA{\rm{D}}} \right)\end{array} \right\} \Rightarrow OM\parallel \left( {SA{\rm{D}}} \right)\)

Ta có:

\(\left. \begin{array}{l}OM\parallel SA\\SA \subset \left( {SBA} \right)\end{array} \right\} \Rightarrow OM\parallel \left( {SBA} \right)\)

b) Ta có:

\(\left. \begin{array}{l}D \in \left( {OM{\rm{D}}} \right) \cap \left( {SA{\rm{D}}} \right)\\OM \subset \left( {OM{\rm{D}}} \right)\\SA \subset \left( {SA{\rm{D}}} \right)\\OM\parallel SA\end{array} \right\}\)

\( \Rightarrow \) Giao tuyến của hai mặt phẳng \(\left( {OMD} \right)\) và \(\left( {SAD} \right)\) là đường thẳng \(d\) đi qua điểm \(D\), song song với \(OM\) và \(SA\).

30 tháng 10 2023

a: Xét ΔSBD có

M,N lần lượt là trung điểm của SB,SD

=>MN là đường trung bình

=>MN//BD

BD//MN

\(MN\subset\left(AMN\right)\)

BD không thuộc mp(AMN)

Do đó: BD//(AMN)

b: Gọi O là giao điểm của AC và BD

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Chọn mp(SBD) có chứa MN

(SBD) giao (SAC)=SO(cmt)

Gọi K là giao điểm của SO với MN

=>K là giao điểm của MN với mp(SAC)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

Ta có: Sx là giao tuyến (SAD) và (SBC) sao cho Sx // AD // BC (1)

Có : M, N là trung điểm của AB, CD

Suy ra: MN // AD // BC (2) 

Từ (1)(2) suy ra: MN // Sx.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Tham khảo hình vẽ:

TH1: \(\left( \alpha  \right)\) cắt đoạn \(AO\) tại \(I\).

Gọi \(E,F,G\) lần lượt là giao điểm của \(\left( \alpha  \right)\) với \(SA,AB,AD\).

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {ABCD} \right) = FG\\\left( {SBD} \right) \cap \left( {ABCD} \right) = B{\rm{D}}\end{array} \right\} \Rightarrow FG\parallel B{\rm{D}} \Rightarrow \frac{{AF}}{{AB}} = \frac{{AG}}{{AD}} = \frac{{FG}}{{B{\rm{D}}}}\left( 1 \right)\\\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {SAB} \right) = EF\\\left( {SAB} \right) \cap \left( {SB{\rm{D}}} \right) = SB\end{array} \right\} \Rightarrow EF\parallel SB \Rightarrow \frac{{AF}}{{AB}} = \frac{{AE}}{{AS}} = \frac{{EF}}{{SB}}\left( 2 \right)\\\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {SAD} \right) = EG\\\left( {SAD} \right) \cap \left( {SB{\rm{D}}} \right) = SD\end{array} \right\} \Rightarrow EG\parallel SD \Rightarrow \frac{{AG}}{{AD}} = \frac{{AE}}{{AS}} = \frac{{EG}}{{SD}}\left( 3 \right)\end{array}\)

Từ (1), (2) và (3) suy ra \(\frac{{EF}}{{SB}} = \frac{{EG}}{{S{\rm{D}}}} = \frac{{FG}}{{B{\rm{D}}}}\).

Tam giác \(SBD\) đều nên \(SB = SD = BD\).

Do đó \(EF = EG = FG\). Vậy tam giác \(EFG\) đều.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Tham khảo hình vẽ:

TH2: \(\left( \alpha  \right)\) cắt đoạn \(CO\) tại \(J\).

Gọi \(M,N,P\) lần lượt là giao điểm của \(\left( \alpha  \right)\) với \(SC,BC,C{\rm{D}}\).

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {ABCD} \right) = NP\\\left( {SBD} \right) \cap \left( {ABCD} \right) = B{\rm{D}}\end{array} \right\} \Rightarrow NP\parallel B{\rm{D}} \Rightarrow \frac{{CN}}{{CB}} = \frac{{CP}}{{C{\rm{D}}}} = \frac{{NP}}{{B{\rm{D}}}}\left( 4 \right)\\\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {SBC} \right) = MN\\\left( {SBC} \right) \cap \left( {SB{\rm{D}}} \right) = SB\end{array} \right\} \Rightarrow MN\parallel SB \Rightarrow \frac{{CM}}{{C{\rm{S}}}} = \frac{{CN}}{{CB}} = \frac{{MN}}{{SB}}\left( 5 \right)\\\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {SCD} \right) = MP\\\left( {SCD} \right) \cap \left( {SB{\rm{D}}} \right) = SD\end{array} \right\} \Rightarrow MP\parallel SD \Rightarrow \frac{{C{\rm{M}}}}{{C{\rm{S}}}} = \frac{{CP}}{{C{\rm{D}}}} = \frac{{MP}}{{SD}}\left( 6 \right)\end{array}\)

Từ (4), (5) và (6) suy ra \(\frac{{MN}}{{SB}} = \frac{{MP}}{{S{\rm{D}}}} = \frac{{NP}}{{B{\rm{D}}}}\).

Tam giác \(SBD\) đều nên \(SB = SD = BD\).

Do đó \(MN = MP = NP\). Vậy tam giác \(MNP\) đều.

9 tháng 6 2018

Giải bài 2 trang 77 sgk Hình học 11 | Để học tốt Toán 11

a) Tìm thiết diện :

Trong mp(ABCD), gọi F = AD ∩ PN và E = AB ∩ PN

Trong mp(SAD), gọi Q = MF ∩ SD

Trong mp(SAB), gọi R = ME ∩ SB

Nối PQ, NR ta được các đoạn giao tuyến của mp(MNP) với các mặt bên và mặt đáy của hình chóp là MQ, QP, PN, NR, RM

Vậy thiết diện cắt bởi mặt phẳng (MNP) là ngũ giác MQPNR.

b) Tìm SO ∩ (MNP). Gọi H là giao điểm của AC và PN .

Trong (SAC), SO ∩ MH = I

Giải bài 2 trang 77 sgk Hình học 11 | Để học tốt Toán 11

Vậy I = SO ∩ (MNP).

20 tháng 12 2021
a. M là điểm chung thứ nhất của (MCB) và (SAD). Ta có: CB // AD. Vậy giao tuyến của (MCB) và (SAD) là đường thẳng d kẻ từ M và song song với AD b. Trong (SAD): d \cap∩ SD = F. Vậy thiết diện cần tìm là hình thang MFCB.
30 tháng 5 2017

Đáp án D

Trong mặt phẳng (ABCD), kẻ đường thẳng d đi qua O và song song với AB

d cắt AD tại J

d cắt BC tại G

Trong mặt phẳng (SBC), kẻ đường thẳng  Gx đi qua G và song song với SC; đường thẳng này  cắt SB tại H

Trong mặt phẳng (SAB), kẻ đường thẳng y đi qua H và song song với AB

y cắt SA tại I

⇒ IHGJ là thiết diện cần tìm

Xét tứ giác IHGJ có: IH // JG ( // AB )

⇒ IHGJ là hình thang

1 tháng 3 2019

Chọn B

5 tháng 1 2020