Cho a, b, c thỏa \(\frac{a}{2a+3b+4c}+\frac{3b}{6b+4c+a}+\frac{4c}{8c+a+3b}=\frac{3}{4}.\)
Chứng minh rằng: \(\frac{a^2}{2a+3b+4c}+\frac{9b^2}{6b+4c+a}+\frac{16c^2}{8c+a+3b}=\frac{a+3b+4c}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:
Đặt: \(\frac{2a}{3b}=\frac{3b}{4c}=\frac{4c}{5d}=\frac{5d}{2a}=k\)
=> 2a = k .3b; 3b = k. 4c; 4c = k. 5d; 5d = k.2a
Mà \(1=\frac{2a+3b+4c+5d}{3b+4c+5d+2a}=\frac{k.3b+k4c+k.5d+k.2a}{3b+4c+5d+2a}=\frac{k.\left(3b+4c+5d+2a\right)}{3b+4c+5d+2a}=k\)
=> C = 1+1+1+1 = 4
Câu hỏi của ✨♔♕ Saiko ♕♔✨ - Toán lớp 6 - Học toán với OnlineMath
Bài 1:
\(\Leftrightarrow\left(\dfrac{1}{11}-\dfrac{1}{21}\right)\cdot462-\left[2.04:\left(x+1.05\right)\right]:0.12=19\)
\(\Leftrightarrow\left[2.04:\left(x+1.05\right)\right]:0.12=1\)
\(\Leftrightarrow2.04:\left(x+1.05\right)=0.12\)
\(\Leftrightarrow x+1.05=17\)
hay x=15,85