tìm x không âm biết
a) \(\sqrt{x}\)> 4
b) \(\sqrt{4x}\)\(\le\)4
c) \(\sqrt{4-x}\)\(\ge\)6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Bpt luôn đúng với mọi x không âm
b) đk: \(x\le2\)
Có: \(\sqrt{x}>\sqrt{2-x}\Leftrightarrow x>2-x\)
\(\Leftrightarrow2x>2\Leftrightarrow x>1\)
Kết hợp với đk, ta được: \(1< x\le2\)
`sqrt{4x+20}-3sqrt{5+x}+4/3sqrt{9x+15}=6(x>=-5)`
`<=>sqrt{4(x+5)}-3sqrt{x+5}+4/3sqrt{9(x+5)}=6`
`<=>2sqrt{x+5}-3sqrt{x+5}+4sqrt{x+5}=6`
`<=>3sqrt{x+5}=6`
`<=>sqrt{x+5}=2`
`<=>x+5=4`
`<=>x=-1(tm)`
Vậy `x=-1`
ĐKXĐ: `x>=0`
`a,3\sqrt(4x)<sqrt9`
`<=>6sqrt(x)<3`
`<=>sqrtx<1/2`
`=>x<1/4` kết hợp với ĐKXĐ có `0<=x<1/2`
KL....
`b, 4\sqrt(8x)>=2`
`<=>\sqrt(8x)>=1/2`
`=>8x>=1/4`
`<=>x>=1/32(TMĐK)`
KL...
a) ĐKXĐ: \(x\ge-4\)
a) Ta có: \(\sqrt{6-4x+x^2}=x+4\Rightarrow\left(x+4\right)^2=x^2-4x+6\)
\(\Rightarrow x^2+8x+16=x^2-4x+6\Rightarrow4x+10=0\Rightarrow x=-\frac{5}{2}\left(loại\right)\)
Vậy pt vô nghiệm
b) \(\sqrt{4x^2-4x+1}+\sqrt{2x-1}=0\Rightarrow\sqrt{\left(2x-1\right)^2}+\sqrt{2x-1}=0\)
\(\Leftrightarrow\sqrt{2x-1}\left(\sqrt{2x-1}+1\right)=0\Rightarrow x=\frac{1}{2}\)
\(a,\Leftrightarrow x-1=4\Leftrightarrow x=5\\ b,\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\3x+1=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow x=4\\ c,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\\ \Leftrightarrow3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=3\\ \Leftrightarrow x+5=9\\ \Leftrightarrow x=4\left(tm\right)\)
\(d,\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{5}+1\right)^2}\\ \Leftrightarrow\left|x-2\right|=\sqrt{5}+1\\ \Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{5}+1\\2-x=\sqrt{5}+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=1-\sqrt{5}\end{matrix}\right.\)
Thôi giải lại câu 1:v (ý tưởng dồn biến là quá trâu bò! Bên AoPS em mới phát hiện ra có một cách bằng Cauchy-Schwarz quá hay!)
\(BĐT\Leftrightarrow\Sigma_{cyc}\frac{\left(a+b+c\right)^2}{2a^2+\left(a^2+b^2\right)+\left(a^2+c^2\right)}\le\frac{9}{2}\)(*)
BĐT này đúng theo Cauchy-Schwarz: \(VT_{\text{(*)}}\le\Sigma_{cyc}\left(\frac{a^2}{2a^2}+\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\right)=\frac{9}{2}\)
Ta có đpcm.
Equality holds when a = b = c = 1 (Đẳng thức xảy ra khi a = b =c = 1)
a) \(\sqrt{x}>4\) có nghĩa là \(\sqrt{x}>\sqrt{16}\)
Vì \(x\ge0\) (x không âm) nên \(\sqrt{x}>\sqrt{16}\Leftrightarrow x>16\)
Vậy \(x>16\)
b) \(\sqrt{4x}\le4\) có nghĩa là \(\sqrt{4x}\le\sqrt{16}\)
Vì \(x\ge0\) (x không âm) nên \(\sqrt{4x}\le\sqrt{16}\Leftrightarrow4x\le16\Leftrightarrow x\le4\)
Vậy \(x\le4\)
c) \(\sqrt{4-x}\ge6\) có nghĩa là \(\sqrt{4-x}\ge\sqrt{36}\)
Vì \(x\ge0\) (x không âm) nên \(\sqrt{4-x}\ge\sqrt{36}\Leftrightarrow4-x\ge36\Leftrightarrow x\le-32\)
Vậy \(x\le-32\)