\(u:{\mathbb{N}^*} \to \mathbb{R}\)
\(n \mapsto {u(n)} = {n^2}\)
Tính \(u\left( 1 \right);u\left( 2 \right);u\left( {50} \right);u\left( {100} \right)\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì hàm số \(u\) xác định trên tập hợp các số nguyên dương
\(\mathbb{N}^{\text{∗
}}\) nên nó là một dãy số vô hạn.
b) Ta có:
\(u_1=1^3=1\\ u_2=2^3=8\\ u_3=3^3=27\\ u_4=4^3=64\\ u_5=5^3=125.\)
\(v\left(1\right)=2.1=2\\ v\left(2\right)=2.2=4\\ v\left(3\right)=2.3=6\\ v\left(4\right)=2.4=8\\ v\left(5\right)=2.5=10.\)
\(\frac{1}{{{n_1}}};\frac{1}{{{n_2}}};...;\frac{1}{{{n_n}}};...\)\(\)
Q(u) lớn nhất khi u² + 2 nhỏ nhất
Ta có u² ≥ 0 với mọi u ∈ R
⇒ u² + 2 ≥ 2 với mọi u ∈ R
⇒ u² + 2 nhỏ nhất là 2 khi u = 0
⇒ Q(u) lớn nhất là (2.0 + 1)/(0² + 2) = 1/2
\(C = \{ x \in \mathbb{R}|{x^2} < 0\} \). Tập hợp C không chứa phần tử nào vì bình phương mọi số thực đều không âm.
\(D = \{ a\} ,\) tập hợp D có duy nhất 1 phần tử là a.
\(E = \{ b;c;d\} ,\) tập hợp E có 3 phần tử.
\(\mathbb{N} = \left\{ {0;1;2;..} \right\}\): tập hợp N có vô số phần tử.
Xét \({u_{n + 1}} - {u_n} = {n^2} + 2n + 1 - {n^2} = 2n + 1\)
Do \(n \in \mathbb{N}* \Rightarrow 2n + 1 > 0 \Rightarrow {u_{n + 1}} > {u_n}\)
a) Mệnh đề “\(\forall x \in \mathbb{N},{x^3} > x\)” sai vì \(0 \in \mathbb{N}\) nhưng \({0^3} = 0.\)
b) Mệnh đề “\(\exists x \in \mathbb{Z},x \notin \mathbb{N}\)” đúng, chẳng hạn \( - 2 \in \mathbb{Z}, - 2 \notin \mathbb{N}.\)
c) Mệnh đề “\(\forall x \in \mathbb{R},\) nếu \(x \in \mathbb{Z}\) thì \(x \in \mathbb{Q}\)” đúng vì \(\mathbb{Z} \subset \mathbb{Q}.\)
Cm: \(\forall\)\(x\in\) N ta có: (n + 45).(4n2 -1) ⋮ 3
Trong biểu thức không hề chứa \(x\) em nhá
Biểu thức chứa \(x\) là biểu thức nào thế em?
Bài này em nghĩ là phải sửa thành với mọi \(n\inℕ\) ạ.
Đặt \(P=\left(n+45\right)\left(4n^2-1\right)\)
Với \(n⋮3\) thì hiển nhiên \(n+45⋮3\), suy ra \(P⋮3\)
Với \(n⋮̸3\) thì \(n^2\equiv1\left[3\right]\) nên \(4n^2\equiv1\left[3\right]\) hay \(4n^2-1⋮3\), suy ra \(P⋮3\)
Vậy, với mọi \(n\inℕ\) thì \(\left(n+45\right)\left(4n^2-1\right)⋮3\) (đpcm)
\(u\left(1\right)=1^2=1\\ u\left(2\right)=2^2=4\\ u\left(50\right)=50^2=2500\\ u\left(100\right)=100^2=10000.\)
u(1)=1^2=1
u(2)=2^2=4
u(50)=50^2=2500
u(100)=100^2=10000