tìm min A a = -4x^2 + 16x - 20 a' = -x^2 - y^2 + 4x -6y + 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a)\(A=x^2-4x+15\)
\(A=x^2-2x-2x+4+9\)
\(A=x\left(x-2\right)-2\left(x-2\right)+9\)
\(A=\left(x-2\right)^2+9\ge9.Với\forall x\in Q\)
Dấu "=" xảy ra khi \(x-2=0\Leftrightarrow x=2\)
Vậy Min A = 9 <=> x = 2
b)\(B=x\left(x-3x\right)=x.\left(-2x\right)=-2x^2\ge0\)
Dấu "=" xảy ra khi \(x=0\)
Vậy Min B = 0 <=> x = 0
c)\(C=x^2+y^2+4x+6y+20\)
\(C=x^2+4x+4+y^2+6y+9+7\)
\(C=\left(x+2\right)^2+\left(y+3\right)^2+7\ge7\)
Dấu "=" xảy ra khi : x = -2 ; y = -3
Vậy Min C = 7 <=> x = -2 ; y = -3
\(A=x^2-4x+15=x^2-4x+4+11=\left(x-2\right)^2+11\)
Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow\left(x-2\right)^2+11\ge11\)
Dấu "=" xảy ra <=> (x-2)2 = 0 <=> x-2 = 0 <=> x=2
Vậy GTNN của biểu thức = 11 khi và chỉ khi x = 2
\(C=x^2+y^2+4x+6y+20\)
\(=x^2+4x+4+y^2+6y+9+7\)
\(=\left(x+2\right)^2+\left(x+3\right)^2+7\)
Vì \(\left(x+2\right)^2\ge0\left(\forall x\right);\left(y+3\right)^2\ge0\left(\forall y\right)\)
\(\Rightarrow\left(x+2\right)^2+\left(y+3\right)^2+7\ge7\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-3\end{cases}}}\)
Vậy GTNN của biểu thức bằng 7 khi và chỉ khi x = -2 và y = -3
b) \(\left(4x+1\right)\left(16x^2-4x+1\right)-16x\left(4x^2-5\right)=17\)
\(\Leftrightarrow64x^3+1-64x^3+80x=17\)
\(\Leftrightarrow80x=16\)
\(\Leftrightarrow x=\frac{1}{5}\)
1)
a) \(2x^2-12x+18+2xy-6y\)
\(=2x^2-6x-6x+18+2xy-6y\)
\(=\left(2xy+2x^2-6x\right)-\left(6y+6x-18\right)\)
\(=x\left(2y+2x-6\right)-3\left(2y+2x-6\right)\)
\(=\left(x-3\right)\left(2y+2x-6\right)\)
\(=2\left(x-3\right)\left(y+x-3\right)\)
b) \(x^2+4x-4y^2+8y\)
\(=x^2+4x-4y^2+8y+2xy-2xy\)
\(=\left(-4y^2+2xy+8y\right)+\left(-2xy+x^2+4x\right)\)
\(=2y\left(-2y+x+4\right)+x\left(-2y+x+4\right)\)
\(=\left(2y+x\right)\left(-2y+x+4\right)\)
2) \(5x^3-3x^2+10x-6=0\)
\(\Leftrightarrow x^2\left(5x-3\right)+2\left(5x-3\right)=0\Leftrightarrow\left(x^2+2\right)\left(5x-3\right)=0\)
Mà \(x^2+2>0\Rightarrow5x-3=0\Rightarrow x=\frac{3}{5}\)
\(x^2+y^2-2x+4y+5=0\)
\(\Leftrightarrow x^2+y^2-2x+4y+4+1=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
3)\(P\left(x\right)=x^2+y^2-2x+6y+12\)
\(P\left(x\right)=x^2+y^2-2x+6y+1+9+2\)
\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)
Vậy \(P\left(x\right)_{min}=2\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Bài làm
a) 2x2 - 12x + 18 + 2xy - 6y
= 2x2 - 6x - 6x + 18 + 2xy - 6y
= ( 2xy + 2x2 - 6x ) - ( 6y + 6x - 18 )
= 2x( y + x - 3 ) - 6( y + x - 3 )
= ( 2x - 6 ) ( y + x - 3 )
# Học tốt #
Bài 1:
a. $M=x^2+4x+9=(x^2+4x+4)+5=(x+2)^2+5\geq 0+5=5$ do $(x+2)^2\geq 0$ với mọi $x$
Vậy $M_{\min}=5$. Giá trị này đạt tại $x+2=0\Leftrightarrow x=-2$
b.
$N=x^2-20x+101=(x^2-20x+10^2)+1=(x-10)^2+1\geq 1$ do $(x-10)^2\geq 0$ với mọi $x$
Vậy $N_{\min}=1$. Giá trị này đạt tại $x-10=0\Leftrightarrow x=10$
Bài 2:
a.
$C=-y^2+6y-15$
$-C=y^2-6y+15=(y^2-6y+9)+6=(y-3)^2+6\geq 6$ (do $(y-3)^2\geq 0$ với mọi $y$)
$\Rightarrow C\leq -6$
Vậy $C_{\max}=-6$. Giá trị này đạt tại $y-3=0\Leftrightarrow y=3$
b.
$-B=x^2-9x+12=(x^2-9x+4,5^2)-8,25=(x-4,5)^2-8,25\geq -8,25$ do $(x-4,5)^2\geq 0$ với mọi $x$
$\Rightarrow B\leq 8,25$
Vậy $B_{\max}=8,25$. Giá trị này đạt tại $x-4,5=0\Leftrightarrow x=4,5$
a: =-4(x^2-4x+5)
=-4(x^2-4x+4+1)
=-4(x-2)^2-4<=-4
Dấu = xảy ra khi x=2
b: =-x^2+4x-4-y^2-6y-9+25
=-(x-2)^2-(y+3)^2+25<=25
Dấu = xảy ra khi x=2 và y=-3